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road to net-zero energy residential buildings 

Pages in Study: 159 

Candidate for Degree of Doctor of Philosophy 

Individual and societal desires for fossil-fuel independence are an increasingly popular 

goal. This research investigates residential geothermal space heating and cooling as a viable 

technical and financial alternative. The road to net-zero energy is then assessed, weighing the 

benefits and detriments to the consumer. 

First, the template for location-specific geothermal space heating and cooling is developed 

through a pilot analysis of a home in Memphis, Tennessee. A methodical process of soil 

investigation, prototype home characteristics, and financial incentives is designed. Expanding 

upon existing studies, accurate soil data is extracted from beneath the foundation of a specific 

address, rather than region-wide soil averages. This high level of precision allows the owner of a 

specific address to preview realistic results and develop truthful expectations. Payback period and 

system lifetimes savings are calculated using two methods. 

Second, the framework developed through the Memphis, Tennessee pilot home is used to 

investigate 11 additional cities across the continental United States. The increase in breadth uses a 

representative city from its respective climate zone. While each city within a single climate zone 

will vary from the representative city, a general climate performance can be determined. With each 
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location’s soil properties and heating and cooling demands, the borefield design and heat pump 

system capacity is customized and applied for analysis. Using human interest surveys from 

previous energy projects, a climate is ultimately classified as viable or nonviable for geothermal 

heating and cooling.  

Finally, the increasingly popular net-zero energy building concept is explored through a 

complementary solar photovoltaic (PV) array to the geothermal system. An array capacity is sized 

and priced to offset the total facility energy use in each climate’s representative city. Once 

determined, the payback and lifetime savings values are calculated and the GHP + PV system 

results are compared to a baseline + PV system. From this, a system type is identified as the more 

viable option for each of the 12 climate zones. The final touch on this research is the introduction 

of the human perceptions toward environmentally friendly renewable energy in general and how 

it affects a consumer’s ultimate decision.  
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NOMENCLATURE 

α  ground thermal diffusivity 

θ  soil volumetric water content 

θs  saturated soil porosity 

ρ  soil density 

AHU  air handling unit 

AOI  area of interest 

APP  actual payback period 

AS  annual savings 

Btu  British thermal unit 

Ck  soil conductivity classification 

cp  ground specific heat capacity 

Cap  heat pump nominal capacity 

CapHP  heat pump cooling capacity 

CDD  cooling degree days 

CHP  combined heat and power 

COP  coefficient of performance 

COPC  cooling coefficient of performance 

COPH  heating coefficient of performance 

Costca  initial capital cost after incentives 
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Costcb  initial capital cost before incentives 

Costcb,GHP initial capital cost before incentives, GHP system only 

Costcb,PV initial capital cost before incentives, PV system only 

Costcb,Total initial capital cost before incentives, GHP + PV system 

Coste  electricity cost 

Costn  balance remaining after n years 

DPP  discounted payback period 

DSIRE  Database of State Incentives for Renewable & Efficiency 

DX-GSHP direct expansion ground source heat pump 

Econs  energy consumed by facility 

Egen  energy generation by PV array 

Epur  energy purchased from grid 

Esold  energy sold to grid 

ECM  electronically commutative motor 

EE/NZE energy-efficient/net zero energy 

EER  energy efficiency ratio 

EUI  energy use intensity 

°F  degrees Fahrenheit 

f10y  correlation function for 10y 

f1m  correlation function for 1m 

f6h  correlation function for 6h 

ft  feet 

GDH  geothermal district heating 
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GHC  geothermal heating and cooling 

GHE  ground heat exchanger 

GSHP  ground source heat pump 

hconv  convective film coefficient 

HDD  heating degree days 

HDPE  high-density polyethylene 

HGSHP hybrid ground source heat pump 

HP024  2-ton capacity heat pump 

HP036  3-ton capacity heat pump 

HP048  4-ton capacity heat pump 

hr  hour 

HVAC  heating, ventilation and air conditioning 

i  rate of inflation 

iM  incentive structure strength multiplier 

imax  maximum incentive structure strength 

is  solar irradiance [kWh/m2/day] 

ini  incentive i 

j  discount rate 

J  Joule 

k  soil thermal conductivity 

K  Kelvin 

kgrout  grout thermal conductivity 

kg  kilogram 
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kWh  kilowatt-hour 

L  borehole length 

LU  center-to-center distance between pipes 

Lifetime Net total system lifetime savings 

m  meter 

mfls  total mass flow rate/kW of peak hourly ground load 

MLS  Multiple Listing Services 

n  year post-investment 

NREL  National Renewable Energy Laboratory 

NZE  net zero energy 

NZSEB net zero site energy building 

OA  outside air 

qy  hearly average ground heat load 

qm  highest monthly ground heat load 

qh  peak hourly ground heat load 

R1m  effective ground thermal resistance corresponding to 1 month 

R6h  effective ground thermal resistance corresponding to 6 hours 

R10y  effective ground thermal resistance corresponding to 10 years 

Rb  effective borehole thermal resistance 

rbore  borehole radius 

Rconv  convective resistance inside tube 

Rg  grout resistance 

Rp  conduction resistance inside tube 
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rpipe,ext  outside radius of pipe 

rpipe,int  inside radius of pipe 

Rs  sun intensity rating 

RA  return air 

RH  relative humidity 

Si  incentive structure strength factor 

Sr  degree of soil saturation 

SC  space cooling 

SPP  simple payback period 

Tg  undisturbed ground temperature 

Tin,HP  max/min heat pump inlet temperature 

Tm  mean fluid temperature in borehole 

TOA  annual average air temperature 

TOA,max  maximum difference in monthly average air temperature 

Tout,HP  max/min heat pump outlet temperature 

Tp  temperature penalty for multiple boreholes 

TMY  typical meteorological year 

TVA  Tennessee Valley Authority 

WAHP  water-to-air heat pump 

W  watts 
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CHAPTER I 

LITERATURE REVIEW 

1.1 Introduction 

Knowledge of the long-term benefits of geothermal technology has the potential to 

empower the residential sector at large and the financial health of individual consumers. Benefits 

include both energy and financial savings by replacing existing space heating and cooling systems 

with geothermal systems. There is no shortage of the technical assessments of geothermal energy 

for space heating and cooling, in both the commercial and the residential sector of the United States 

and abroad. From the perspective of energy savings, the argument is quite compelling to tap into 

this available and inexhaustible heat sink below the surface of the Earth. However, before the 

energy savings, the system must be constructed – an endeavor that only becomes possible with a 

substantial initial monetary investment. With data comes knowledge, and knowledge is the tool 

necessary for savvy homeowners to feel confident in a change of technology. 

Despite the proven benefits of geothermal energy use in the residential sector, much work 

is still needed to make the option affordable and accessible. The review of published data will 

outline barriers to widespread deployment of renewable energy (RE) systems, system simulation, 

design optimization, life cycle cost analysis, and financial incentive analysis. Sources within 

encompass both the United States (U.S.) and international history of activities. 

Lessons learned from prior and current research teams provide direction toward identifying 

and developing further investigations. Main objectives include financial benefits, involvement in 
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the renewable energy revolution, and contributions to the quality of life improvement of 

homeowners. 

1.2 Growth and Factors Prohibiting Widespread Adoption of Renewable Energy 

Systems 

Abundant research on residential ground source heat pump (GSHP) systems claims high 

initial cost is the main barrier for widespread adoption in both commercial and residential sectors 

[1]–[6]. Despite tax rebates, incentives, loan programs, and future energy savings, the initial high 

cost of ground heat exchangers (GHE), drilling, and other equipment is too high for many 

homeowners. 

In addition to measurable factors prohibiting widespread growth of renewable energy 

systems, research highlights the less tangible factors of 1) public education and 2) federal support 

consistency. Thorsteinsson and Tester [7] conducted a revealing survey study that assessed the 

public awareness of geothermal resources. While the focus of the research had geothermal district 

heating (GDH) as the ultimate target, the outcome of the awareness assessment can be applied 

toward general public and homeowner awareness. The findings concluded that 60% of community 

leaders admitted to ignorance about how and where to gather information to pursue GDH heating 

systems in their locales. Even though many are aware of the economic and environmental benefits, 

the obstacles are too daunting for community leaders to invest the time and effort. Programs to 

educate United States about geothermal resources have come and gone, such as GeoPowering the 

West by the U.S. Department of Energy (DOE). This expired program aimed to address the 

educational deficits across western states for geothermal energy and electricity generation. The 

fact that GeoPowering the West is no longer active supports the inconsistency claim of federal 

support. Whether for district heating systems or residential deployment, federal funding programs 
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have cyclically surged and retreated. Loans, grants, and congressional acts have provided a few 

western states enough financial support to implement GDH systems. Changes to research program 

funding, geothermal land-leasing, and state legislation regulations have also contributed to the 

blockade between individuals and mature geothermal energy implementation. Thorsteinsson and 

Tester [7] thoroughly identify the highs and lows of geothermal education, funding, and ultimate 

execution.  

Fear of the unknown is another intangible barrier to geothermal development, both 

individual or community in scope. Reber et al. [8] presented a unique perspective on the primal 

aspect of resistance to change. Unlike other forms of renewable energy such as solar and wind, 

geothermal energy cannot be seen by the human eye. One can see the sun and the motion of a wind 

turbine, but not see into the deep underground. This inability to be experienced through senses 

causes human beings to hesitate and resist adoption of novel technology. Therefore, Reber et al. 

[8] recognizes human perception as a barrier to widespread geothermal development.  

Internationally, the surge in efforts to exploit this valuable renewable energy source is 

apparent. As of a 2011 geothermal energy use survey worldwide, China, United States, and 

Sweden ranked in the top three nations for direct geothermal use. Within the European Union, the 

prevalence of geothermal use grew by 25% from 2011 to 2012. According to Păceşilă [9], the 

European Union National Renewable Energy Action Plans (NREAP) aimed to increase the 

capacity of geothermal networks by 20% from 2012 to 2020. Similar to other countries and sectors, 

however, the growth may be halted by the initial investment of geothermal infrastructure. 

Government strategies are in place to assist with financial burdens such as feed-in-tariffs, tax 

benefits and other government subsidies. Feed-in-tariffs are monetary payments to individuals that 

do generate their own electricity through renewable sources. Most of this activity, however, 
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encompasses high enthalpy geothermal sources that is used to generate electricity from heat, rather 

than convert to heating and cooling. These applications apply less to homeowners and more to 

plant operations. 

Money is not the only barrier to geothermal system growth internationally. In Germany, 

despite the implementation of numerous policies, a revealing study by Michelson and Madlener 

[2] pointed to human and home-driven growth deterrents. The research team focused on the 

characteristics of the homeowner and the residence to quantify a likelihood of renewable heating 

system adoption. They attempted to predict the decision-making process of the homeowner. 

Interestingly, the income, level of education, age, and gender of the homeowners were human 

variables considered in the probability equation. Home characteristics such as age of home, type 

of existing heating system, customization of home architecture, and geographical location in 

Germany were home variables in the probability equation. While not a comprehensive list, these 

factors represent the subjective spectrum of homeowner and residence characteristics that 

influence renewable energy adoption. Despite the government policies attempting to mitigate high 

initial costs, these subjective factors may ultimately sway homeowners one direction or the other. 

In the Greek residential sector, Karytsas and Choropanitis [3] reported the results of the 

Domestic Use of GHSPs in Greece public survey. The survey attempted to pinpoint the major 

barriers for widespread GSHP adoption in Greece. Three of the top blockades were 1) installation 

cost, 2) insufficient public knowledge of GSHP systems and its benefits and 3) land area 

constraints in urban areas. The response to the survey results will be discussed in Section 1.5. 

1.3 Materials and Methods Used for Simulation Energy Use 

Lui [1] performed a study with both commercial and residential building types. The scope 

of the research was twelve (12) climate zones across the United States. The prototype home chosen 
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for the simulation was a single level, slab-on-grade home with wooden framing. This home was 

used for all twelve (12) climate zones as representative of the typical residential dwelling in the 

U.S. Simulation objectives were to satisfy the home’s space heating and space cooling demands, 

comparing the existing HVAC system to a GHE system with a water-to-air heat pump. One of 

Lui’s main findings was that the energy savings was highly dependent on the home’s existing 

HVAC system type, efficiency, and source. The simulated residence condenser consists of ground 

heat exchanger with designed vertical bore. It is unknown whether the bore was redesigned for 

each climate zone, based on geographical ground parameters. The review reveals between 32% 

and 59% annual energy savings for single family residences, a consistently higher result that for 

commercial buildings. As is performed in this research, Lui [1] states that more accurate energy 

savings data may be obtained by customizing the ground heat exchanger through geographically 

specific ground characteristics. Clear strengths of the report are the identification of diverse 

climate zones and comparison of existing HVAC systems to geothermal heat exchanger systems, 

in terms of energy savings. Topics of elaboration consist of, but are not limited to, site-specific 

prototype models for simulation, GHE design based upon site ground characteristics, and payback 

period analysis for retrofit applications. Local electricity cost data will provide valuable 

information on payback, and how viable a geothermal retrofit will be for inhabitants of study 

regions. Lui’s [1] study is the source of the cited cost of residential geothermal system installation 

of $3,000 - $5,000 per ton of cooling.  

Lim et al. [5] conducted an analysis residential geothermal heat pump systems, suggesting 

improvements that could yield more accurate results. Within the scope of simulation methods, the 

research team used data from the Residential Energy Consumption Survey (RECS) to group 

residences by climate region and state. From this energy use data, heat pump equipment was sized. 
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However, specific building characteristics were not considered such as year built, insulation type, 

fenestration type, construction envelope, number of occupants, or site-specific weather patterns. 

Lim et al. [5] stated that better energy use inputs would result from EnergyPlus™ or a comparable 

simulation engine, as well as region-customized home characteristics. 

1.4 Design Optimization for Residential Geothermal Systems 

Through the design optimization process, multiple factors can affect the performance, 

efficiency, and ultimate energy savings of a residential ground source heat pump system. An 

immensely valuable study by Eslami-Nejad et al. [10] compared air-source, ground-source, and 

hybrid heat pumps for energy use in cold climates. Montréal, Canada is the location of the subject 

home. Through the comparison of these three types of heat pumps, several parameters were 

modified on the ground loop and heat pump capacity to distinguish optimal performance. The 

study assumed a stainless-steel borehole U-tube rather than the more traditionally used high 

density polyethylene (HDPE) in the United States. Also, only the heating mode was considered. 

While the main objective was to determine whether a hybrid type heat pump resulted in significant 

energy savings, the most useful information relevant to this study was the parametric analysis of 

the direct expansion ground source heat pump (DX-GSHP) configuration. A hybrid ground source 

heat pump system (HGSHP) consists of the ground loop evaporator as well as an additional air-

source evaporator to meet extreme temperature situations. The air evaporator only functions once 

the ground loop returns fluid at a temperature too low to meet the heating demand. Through 

multiple configurations of heat pump sizing, borehole quantity and length, borehole diameter, and 

pipe diameter and thickness, a detailed comparison emerged identifying optimal design parameters 

for the Montréal-specific climate. The authors’ conclusions reinforced the importance of proper 

ground loop and heat pump sizing for maximum efficiency and performance. They determined 
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that, with proper sizing of the ground source heat pump system, the inclusion of a hybrid 

evaporator did not significantly reduce energy use over the calendar year. Undersized systems, 

however, will spike electricity use. Therefore, Eslami-Nejad et al. [10] suggested erring on the 

side of an oversized heat pump. The argument claims that a slight increase in initial investment for 

a larger heat pump can be quickly offset by the annual increase in consumption savings. The life-

cycle cost analysis is stated as the next step of the revealing study.  

A residential application was considered in Athens, Greece where borehole depth, quantity, 

and software type to determine efficiency through measure of circulating fluid mean temperature. 

Sagia et al. [11] concluded that proper sizing of the ground heat exchanger is the vital factor to 

effective simulation and performance. In their study, the control case was a 3-borehole quantity 

loop of 70 meters in depth. The borehole quantity remained the same, but lengths increased 

incrementally by 10 meters to a maximum depth of 140 meters. Borehole spacing was also varied. 

Results confirmed that larger borehole spacing creates less heat transfer interference and thus a 

higher mean fluid temperature. Undisturbed ground temperature was estimated from average air 

temperature, and the source of the ground thermal conductivity data point was not revealed. Unlike 

the study by Sagia et al. [11] , this research attempts to improve upon the estimations of ground 

temperature and ground conductivity through geographically pertinent soil properties.   

Additional design features that have major potential to improve system performance 

include ground loop pipe characteristics, installation site investigations, and system controls. The 

history of the ground loop featured metal tubing, but when it proved susceptible to leaking and 

maintenance issues, the design choice evolved to high density polyethylene (HDPE). Spitler [11] 

reported on a thermally enhanced grout (TEG) and HDPE pipe and its effect on required borehole 

depth for equivalent performance to the baseline case of bentonite grout and standard HDPE. With 
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various combinations, the study revealed a reduction in required borehole depth of 27% with the 

use of both the TEG and enhanced HDPE pipe. Mechanical spacers between U-tube legs to push 

pipes to the outer radius of the borehole also showed promise in optimizing heat transfer to and 

from the ground. However, the spacer installation increase construction costs and offset the energy 

savings potential. For controls, emphasis was placed on shutting off the fluid circulating pump 

when the heat pump was not operational. In another publication, Spitler [12] emphasized the 

importance of the ground heat exchanger and heat pump integration during the design process to 

achieve efficient performance. Proper length of the ground heat exchanger, as well as choosing the 

optimal size of heat pump can greatly improve system performance. Both components of this loop 

are critical, and they work together effectively if proper system integration is considered in design. 

Proper GHE design also requires ground thermal conductivity characteristics. For commercial 

projects, ground samples can be extracted for accurate conductivity data. However, the cost of 

these in situ extractions may be cost prohibitive for residential projects. Recommendations are not 

included for the most effective methods to determine ground thermal properties for residential 

designs. 

Location-specific ground characteristics such as soil conductivity were not considered by 

Lim et al. [5] in their residential geothermal heat pump due to lack of available information. 

However, this study published extremely valuable land area requirements and cost data through 

extensive interviews with geothermal system construction experts [5]. Dhepe and Krishna [13] 

also published land area requirements as a function of cooling load required. For consistency, the 

data reported have been converted from [m2] to [ft2]. Results are summarized in Table 1.1.  
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Table 1.1 GHE Installation Data 

Borefield Type Land Requirements  Installation Cost  

Vertical  
100 – 300 ft2/ton 

248 – 291 ft2/ton 
$ 4,400/ton 

Horizontal 
1,500 – 3,000 ft2/ton 

2,497 ft2/ton 
$ 2,640/ton 

 

Karytsas and Choropanitis [3] analyzed the Greek residential GSHP sector. The sector is 

heating dominant with fossil fuel heating source and electricity for air-conditioning [3]. Findings 

report that proper GSHP design heavily relies on climate, building characteristics, loads, and soil 

conditions. Soil characteristics are deemed the most important variable for GHE design and use of 

a Thermal Response Test (TRT) is recommended for best results. The research also presented cost 

data for varying GSHP characteristics in four climate zones throughout Greece, itemized by 

component for varying GHE configurations. 

1.5 Prior Attempts to Calculate Life Cycle Cost for Geothermal Systems 

Despite abundant published research and evidence, widespread adoption of geothermal 

space heating and cooling systems is stilted in residential buildings in the United States. Data 

reveals that only 0.5% of residential dwellings use GSHP systems for space heating and cooling 

[5]. The tangible main cause of delayed implementation is high investment payback periods, or 

the time required to recover the initial cost with annual savings. T. Lim [14] researched barriers to 

widespread adoption of geothermal residential heat pump systems. In the investigation, a simple 

payback (SPP) period was the method that calculated these payback periods. The SPP does not 

consider the time value of money. 
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Similar to a payoff period, Reber et al. [8] define the Levelized Cost of Heating (LCOH) 

metric for GDH systems. LCOH is a dollar amount per 106 Btu quantifying the cost per unit of 

energy required to pay off the initial capital investment by the end of the system lifetime (assumed 

30 years). Their study analyzed a variety of locations around the U.S. that are viable places for 

GDH development. Through the research, it was concluded that slight changes to the discount rate 

used in the discounted cash flow formula caused highly varied LCOH results. Therefore, discount 

rate is a highly sensitive parameter in payoff determinations. The discount rate is used for 

individual, residential applications as well as the community-wide GDH applications. 

Only federal incentives were considered in Lim et al. [5], due to the variability of local 

programs and unavailability of all local information. However, the authors suggested a more 

accurate payback period can be calculated if local state and community incentives are included 

and payoff analysis. 

Internationally, Karytsas and Choropanitis [3] determined payoff of GSHP system costs and 

maintenance for homeowners in Greece. An installation estimate is used for cost per kW of energy 

for GSHP components including GHE, heat pump, distribution, and engineering costs. For a closed 

loop GSHP system to replace a natural gas heating / air-source-heat-pump cooling, the estimated 

payoff ranges from 7.18 years to 10.67 years, depending on the climate zone.  

In an effort to quantify the number of interested homeowners, Karytsas et al. [15] conducted 

polls of homeowners to answer these very questions about energy saving space heating and cooling 

systems. Although conducted in European countries, the results are a reputable gauge on how 

consumers would respond in the United States. The data presented in Table 1.2 display the 

percentage of citizens surveyed willing to accept certain payback periods. 
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Table 1.2 Percentage of Homeowners Willing to Accept Payback Periods 

Country 0 – 5 Years  5 – 8 Years 8 – 10 Years 10 – 15 Years 15+ Years 

Greece 69% 16% 8% 3% 4% 

Spain 59% 13% 15% 3% 6% 

Portugal 71% 11% 12% 1% 5% 

Average 66.4% 13.4% 11.7% 2.4% 5.0% 

 

Several approaches have been executed in prior research of energy projects to determine 

payback. Each method has advantages and disadvantages depending on the analysis objectives.  

1.6 Existing Incentive Analysis for Renewable Energy Systems 

1.6.1 International Incentive Analysis 

Across the Earth, Karytsas and Choropanitis [3] reported that only 26 countries had 

residential GSHP systems in 2000 and that number rose to 48 countries by 2015. In Greece, the 

historical timeline of incentives is erratic. Between 2004 and 2014, incentives cyclically ranged 

from zero assistance to interest-free loans and grants. As introduced in Section 1.2, the Domestic 

Use of GSHPs in Greece survey was administered. The barriers to widespread domestic use are 

stated previously. To address the public opinion, those surveyed were asked what actions would 

help curtail the barriers to widespread growth. Three of the top actions that the public indicated 

they would respond to were 1) different electricity prices for GSHP systems, 2) increased public 

awareness of system benefits and 3) tax exemptions.  

Terzić et al. [16] reported that a GHE/heat pump system reduces the reliance on traditional 

energy sources by 50% in the European Union. Therefore, a sensible and financially possible 

development scheme is just as desired internationally as is domestically. As the United States, 
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however, the best method to achieve growth in the renewable energy sector requires financial 

incentives and creative schemes.   

A unique perspective presented by Dumas [17] on how renewable energy, geothermal 

specifically, deployment is planned for the European Union. Through the development of “smart 

cities and smart rural communities”, the European Union (EU) plans to drastically reduce the 80% 

of heating and cooling that relies on fossil fuels. These smart communities, outlined in the 

European Commission’s Energy Roadmap 2050, will centralize heating and cooling with main 

renewable heating and cooling (RNC) plants [18]. The customers of the district heating and cooling 

plants will be connected through a network, much like an electricity grid, and will enjoy 

competitive energy rates. While this centralized concept will remove the initial capital investment 

cost off the end-user, or homeowner, the first obvious question concerns the funding for the grid 

and energy source infrastructure. Taxes for both users and non-users, as well as operational taxes 

may prevent the smart grid concept from widespread popularity.  

In Germany, Michelson and Madlener [2] outlined several policies and programs that 

aimed to assist with capital investment of renewable energy systems to comply with 

Energiekonzept. Energiekonzept is the country’s plan to reduce the residential sector’s energy 

demand by 80% by the year 2050, and replace the remaining energy source need with renewable 

sources. Low interest loan programs, grants, feed-in tariffs and state subsidies were born from this 

plan. Act on the Promotion of Renewable Energies in the Heat Sector, Market Incentive Program, 

and Energy-Efficient Refurbishment Program are a few of these attention-grabbing efforts. While 

attractive by name, many of these programs were inconsistent with varying monetary awards by 

home type, source type, and calendar year. However, their implementation did assist some 

homeowners toward the 2050 Energiekonzept goal. 
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1.6.2 Domestic Incentive Analysis 

Research widely agrees initial capital cost is a major barrier to GSHP growth in the United 

States. Innovative strategies aim to break down the cost barrier. “Loop-leasing” is a method 

described by Kavanaugh [4] wherein an investor funds the installation of the GHE system, then 

leases it back to the facility occupant for a monthly fee. An interesting concept, making most sense 

in the commercial or industrial setting. However, an analogy to the residential sector is not an 

impossibility. Rather than an individual investor, a lender or bank could offer low interest loans 

for initial capital investments for renewable energy home improvements. While Kavanaugh 

focuses on the commercial sector, a valuable model emerges with the “loop-leasing” approach. 

With modifications to fit the homeowner/lender relationship, an attractive financial opportunity 

may lure homeowners toward renewable energy system implementation. These creative financing 

strategies aside, there are several federal and local incentive programs throughout the U.S. Looking 

at programs from a broader scope, this section outlines domestic initiatives to provide financial 

incentives to homeowners for everything from light bulbs to large home energy projects. 

1.6.2.1 ENERGY STAR Financial Incentive Program 

ENERGY STAR certification includes satisfying rigorous requirements, completing a 

comprehensive inspection and approval process, and ultimately qualifying for financial incentives. 

Features of ENERGY STAR Certified Homes include high-efficiency heating and cooling, water 

protection system, complete thermal enclosure, and efficient lighting and appliances [19]. High-

efficiency heating and cooling equipment used in ENERGY STAR Certified homes offer 

minimum noise emission, deliver premium indoor air quality with fewer pollutants than traditional 

systems due to continuous air filtration, and use overall less energy. The design of the HVAC 

system focuses on proper equipment sizing to ensure proper temperature and humidity control, as 
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well as equipment life. System Installation optimizes duct design, proper sealing, and system 

testing.  

A whole house water protection system is a critical component of healthy indoor air quality 

and structure longevity [20]. Minimal amounts of water infiltration into the home can ultimately 

lead to mold and material degradation, both leading to potential health risks and financial burdens. 

Construction materials, vapor barrier installation, and proper site drainage are major components 

of achieving the water protection for the ENERGY STAR Certified home. 

Proper air sealing, sufficient levels of insulation, and the proper installation of insulation 

are the main requirements for ENERGY STAR Certified homes to achieve complete thermal 

enclosure [21]. Air leakage can drive up monthly energy costs due to warm or cool conditioned 

air escaping to the exterior of the home. Builders attempt to minimize thermal bridging, which is 

the presence of pathways that allow for heat to traverse between inside and outside. Continuous 

wall insulation between wooden studs or prevention of excess stud installation assist with this 

effort. Proper insulation installation and highly-efficient window selection and installation are also 

significant aspects of providing a complete thermal enclosure. 

ENERGY STAR lighting and appliance technology has evolved to the point of ultimate 

comfort and cost savings. In addition to long life, cost savings due to drastically reduced energy 

use, and supreme safety ratings, light bulbs now can even reduce heat emitted during use. A LED 

7-watt bulb manufactured by General Electric replaced a 60W bulb and does not get hot to the 

touch when illuminated. Therefore, the user saves money on lighting, as well as reduces the cooling 

load due to heat generation from bulbs. Appliances that have met ENERGY STAR Certification 

can significantly reduce the monthly utility portion that comes from dishwashers, clothes 

washers/dryers, refrigerators, and fans [22].  
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Upon completion of energy improvements, a rigorous inspection process ensues to satisfy 

the Environmental Protection Agency’s (EPA) performance guidelines. There are four steps 

required to earn the label of ENERGY STAR Certified Home:  

Step 1. Builder must be an ENERGY STAR partner 

Builder makes a commitment to build new homes that satisfy stringent guidelines set 

forth by ENERGY STAR. 

Step 2. Builder and Rater collaborate to choose energy efficient home features 

Rater must approve construction plans and those plans are reviewed based upon the 

EPA developed prescriptive energy efficiency package. 

Step 3. Builder builds home and rater field verifies and performs QA 

Inspections performed frequently during construction due to the higher energy 

standards. Raters use a comprehensive checklist to verify home efficiency and 

inhabitant comfort. 

Step 4. Rater certifies home and issues ENERGY STAR label 

Final inspection is completed, and ENERGY STAR certificate awarded, as shown in 

Figure 1.1. The label is proudly placed on circuit breaker box.  
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Figure 1.1 New Home ENERGY STAR Label 

 

Beyond the ENERGY STAR Certification, a residence may become a Zero Energy Ready 

Home (ZERH). The U.S. Department of Energy (DOE) Zero Energy Ready Home is a distinction 

that verifies the energy consumption of a home equals the energy generated from renewable 

sources at the home. The U.S. Department of Energy publication of National Program 

Requirements mandates the specific design requirements that must be field tested, verified, and 

approved for this prestigious qualification [23]. Requirements include home features involving 

insulation, ducting, water system heating and delivery, lighting and appliances, indoor air quality, 

and renewable energy generation. According to the Zero Energy Project, taxpayers and builders 

may receive up to 30% of the cost of photovoltaic systems and solar hot water systems through 

the Residential Renewable Energy Tax Credit. Additionally, the Residential Energy Efficiency 

Tax Credit targets existing homes that perform energy efficient equipment upgrades in the value 

of up to $500 [24].  

Additionally, a residence may earn the label of a Renewable Energy Ready Home (RERH). 

To become a RERH, specifications published by the U.S. Environmental Protection Agency focus 

on solar energy systems. The Site Assessment Tool allows builders and homeowners to input 
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information about the home and determine whether the site is a good candidate for solar array 

performance as compared to maximum [25]. Sites that can achieve up to 75% of maximum 

generation are flagged as a promising location. New York City’s Department of Design and 

Construction offers an online geographical assessment tool to determine viable locations for 

geothermal heating and cooling system development [26]. 

1.6.3 Additional Tax Credits 

1.6.3.1 Renewable Energy 

Installation of geothermal heat pumps, small wind turbines, solar energy systems, and fuel 

cells are eligible for tax credits to help the homeowner recover costs. The offer does not expire 

until December 31, 2021, existing homes and new construction are eligible, and both primary and 

secondary residences qualify. The tax credit dollar amount is graduated based upon the year the 

system is installed, as summarized in Table 1.3. 

Table 1.3 Renewable Energy Tax Credit Percentage 

Calendar Year Installed Tax Credit 

2018 and 2019 30% of system cost 

2020 26% of system cost 

2021 22% of system cost 

Data from DSIRE® current as of March 14, 2020. www.dsireuse.org 

Taxes the Tax Magazine SALT (State and Local Taxes) Block reported in 2016 that several 

states including Florida, Arizona, and Rhode Island offer property tax valuation modifications for 

residences using geothermal energy systems [6]. Property tax exemptions in Montana and North 

Dakota are available for homes using alternative energy systems to fossil fuel. The publication was 

clear in stating that the property tax valuation and exemption incentives varies throughout the 



www.manaraa.com

 

18 

United States by renewably energy source, duration of incentive, and value of incentive. Thus, 

each potential site for renewable system implementation must be considered separately. This 

variability is considered further in CHAPTER III. 

1.6.3.2 Qualified Energy Improvements 

Improving the home through insulation, new metal or asphalt roofing, windows, doors, and 

skylights with efficiency rating approved by ENERGY STAR can result in tax credits. The amount 

of the tax credit is 10% of the cost of the materials only and cannot exceed $500. Credits are filed 

with annual taxes and must include receipts and a Manufacturer’s Certification Statement that the 

product complies with the requirements for tax credit eligibility. 

1.6.4 EPA Geothermal-Specific Energy Incentive Programs 

According to the Database of State Incentives and Renewables (DSIRE®), the only personal 

tax credit program that applies to all states for geothermal technology is the Residential Renewable 

Energy Tax Credit.  This incentive program offers the most robust financial benefit. Others 

investigated below are either state specific or loan programs. 

1.6.4.1 Residential Renewable Energy Tax Credit 

The Residential Renewable Energy Tax Credit offers up to 30% financial incentive in the 

form of a tax credit for geothermal heat pump systems placed in new or existing homes [27]. The 

residences do not have to be the primary dwelling. The credit gradually steps down from 30% to 

22% based up the year of installation from 2019 to 2022. 

1.6.4.2 FHA PowerSaver Loan Program 

Federal Housing Administration (FHA) offers the PowerSaver loan for eligible 

homeowners to make energy improvements to their homes [28]. Minimum credit score and debt-
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to-income ratio requirements must be met, and the program applies to principle residences only. 

Maximum loan amount is $7,500 for a maximum payback period of twenty (20) years. Interest 

rates vary by customer from 4.99% to 7.75%. 

1.7 Conclusion 

Significant research and data collection exist for geothermal heat pump systems. The scope 

of the data includes design, construction, location feasibility, policy history, barriers and 

suggestions for the future. Several themes emerge: significant energy savings compared to 

traditional energy systems, goals of districts, states, or countries to achieve a renewable system 

percentage threshold in coming years, high initial installation cost due to drilling and borefield 

construction, and a long history of financial incentives to promote growth. Much of the existing 

studies focus on district heating systems rather than individual residences. For the data on 

individual residences, gaps occur in using actual heating and cooling load data from a specific 

home in the climate of interest, rather than from database or square foot models. Pairing the 

building load with location-specific soil properties for designing the GHE, as well as including all 

local and federal financial incentives will result in a more accurate payoff period calculation. 

Marrying these three site-specific parameters will result in the most accurate payoff period 

calculation. Individual homeowners in a specific geographical location can make the most 

educated decision on whether to adopt a residential geothermal energy system. 
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CHAPTER II 

TECHNO-ECOMONIC ANALYSIS OF GEOTHERMAL SYSTEM IN RESIDENTIAL 

BUILDING IN MEMPHIS, TENNESSEE 

The residential sector in the United States relies prolifically on electric cooling and natural 

gas heating, ventilating, and air conditioning systems. Technology advancement for more energy 

efficient and cost-effective energy systems is continuous, and a geothermal energy system is an 

attractive alternative to electricity and natural gas. This study investigates a simulated residential 

building in Memphis, Tennessee (TN) to assess the energy savings by replacing the existing 

electric/gas system with a geothermal heat pump system. Further, economics are considered to 

examine the payoff period and ultimate viability for geothermal technology in this region. 

EnergyPlus™, the U.S. Department of Energy (DOE) whole building simulation engine, analyzed 

a prototype home in Memphis, TN with this common utility system. City-specific ground 

characteristics are used to customize the ground heat exchanger and optimize result accuracy. 

Simulations reveal that replacing the existing system with a geothermal system accomplishes a 

26% reduction in energy use. Our results prove an exciting alternative for homes in Memphis, TN 

to achieve abundant energy savings. Despite lower meter readings, a homeowner must consider 

initial capital investment and payoff period. This study provides city-customized payoff data by 

using local ground characteristics for design, location-specific home features, and regional plus 

federal incentive programs. Methods used within create a unique and accurate template procedure 
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for identifying promising regions for residential geothermal systems throughout the broader United 

States. 

2.1 Introduction 

Residential homeowners shouldering the burden of high utility costs are seeking more 

affordable alternatives to existing home operations. A major contributor to the monthly utility bill 

is the residence’s heating, ventilation, and air conditioning (HVAC) system. According to the U.S. 

DOE, HVAC costs average 48% of the energy consumption of a traditional home in the United 

States [29]. In comparison to other cities in the country, Memphis, TN consistently ranks among 

the lowest average utility bills in the residential sector [30]. The data supporting this ranking 

information was retrieved from a 2019 survey by Memphis Light, Gas and Water (MLGW), the 

city’s utility provider. MLGW purchases power from, and is the largest customer of, the Tennessee 

Valley Authority (TVA). Since 2010 Memphis has ranked in the top 4 of 41 cities for lowest 

average winter utility bill, assuming a standardized usage amount. Competing cities were of 

equivalent size within the same or adjacent climate zones. This high rank is due to the low utility 

costs. For the overall annual utility bill average, Memphis, TN ranked 13 of 41 cities of similar 

climate conditions.  

Despite competitive rates, modifications to existing systems would be even more attractive 

to homeowners nationwide if the alternative energy source produced monthly cost reductions. 

Prior research indicated the massive opportunities for energy savings and cost savings by replacing 

traditional HVAC systems with ground source heat pumps (GSHP). Liu et al. [1] stated that 98% 

of space heating (SC) in the residential sector used electricity as the energy source. The 

contribution of electricity rose to 100% within the single-family subsector of residential dwellings. 
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Simulation results predicted national savings of 4.3 quadrillion Btu and $38.2 billion annually if 

GSHP technology replaced electric. 

Geothermal technology experiences slow adoption despite the attraction of an alternate 

energy source for the home and monthly cost reduction. Abundant research on residential ground 

source heat pump (GSHP) systems claims high initial cost is the main barrier for widespread 

adoption in both commercial and residential sectors [31][2][3][4][5][6]. Despite tax rebates, 

incentives, loan programs, and future energy savings, the initial high cost of ground heat 

exchangers (GHE), drilling, and other equipment is too high for many homeowners. These 

blockades are an international concern.  

Domestically, federal and state financial incentive programs attempt to reduce the initial 

investment, along with other creative means under investigation. Goetzler et al. [32] cite a utility 

on-board financing initiative that grants a low or no interest loan for the installation. As the bills 

are received monthly, the loan balance is reduced by the amount of savings on that utility bill. 

Therefore, financing the geothermal system is hidden by the unchanging out-of-pocket expenses 

by the homeowner, until the loan is paid in full. Sonnier [6] reported property tax exemptions in 

Montana and North Dakota for the capital investment of geothermal heat pump systems in single 

or multi-family residences. These exemptions, however, were limited by duration and maximum 

dollars. Lim [14] performed a simple payback analysis of ground source heat pump (GSHP) 

systems in United States residences. His findings on high initial cost and long payback periods are 

concluded by stating increased accuracy with better energy use calculation methods. Heating and 

cooling loads will be more accurate with use of EnergyPlus™ [33] by the U.S DOE. Ground loop 

parameters will be more accurate by considering regional soil characteristics. Payback period will 

be more accurate if regional, state and federal incentive programs are considered cumulatively. All 
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of these improvements suggested by Lim were implemented in this study for the Memphis, TN 

baseline home. Paralleling the commerial photovoltaic incentive analysis by Zhang et al. [34], this 

study performed the residential geothermal incentive analysis.  

Using the heat available underground may provide the solution to high energy costs 

resulting from heat generation. The scope of this investigation is a residential building in Memphis, 

TN. A common electric air conditioning cooling system and natural gas furnace heating is replaced 

with a high-efficiency heat pump and ground heat exchanger. Methods of investigation include 

calculations of required borehole length as presented by Philippe et al. [35], where vertical 

geothermal borefield design process is shown in detail. The simulation engine employed is the 

EnergyPlus™, a whole building energy analysis tool by the U.S. Department of Energy. 

Justification of the EnergyPlus tool for analysis of residential buildings presented by Cho and 

Mirianhosseinabadi [36] proves its validity. Reference files and additional studies by Kang and 

Cho [36] provided useful guidance on ground source heat pump modeling. 

Along with the surge in GSHP technology, both in the commercial and residential sector, 

many improvements have been designed and tested to improve the performance of GSHP. With 

improved performance and efficiency, and potential installation cost saving methods, the payback 

period may decrease enough to attract more individuals and institutions to adopt the energy source. 

Spitler [12] reports on several cost saving improvements, including both system components and 

construction methods. On the system component side, one major improvement is improved 

thermal conductivity of the grout surrounding the U-tube, as compared with traditional bentonite 

grout. Thermally enhanced high density polyethleye (HDPE) pipe, along with corrugated pipe 

features to increase surface area for heat transfer, can also improve efficiency and energy savings. 
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For programming and savings, [12] emphasized shutting off the ground loop fluid circulating 

pump when the heat pump was not required. 

Gaps exist in the published analysis of the energy savings and financial implications of 

geothermal residential HVAC. Lim [5] concluded that there are 3 improvements to their research 

that would yield more accurate payoff analyses. First, they recommend improving heating and 

cooling loads estimation methods. Their research time used data from the Residential Energy 

Consumption Survey (RECS) to group residences by climate region and state. [5] stated that better 

energy use inputs would result from EnergyPlus™ or a comparable simulation engine. Second, 

heat pumps were sized based upon this database energy use data. In this chapter, specific building 

characteristics were considered such as year built, insulation type, fenestration type, construction 

envelope, number of occupants, and site-specific weather patterns. Third, only federal tax credits 

and rebates were considered, due to lack of knowledge of the state and regional programs. This 

chapter encompasses all known incentives, federal and local. 

This study analyzed the energy consumption of a vertical ground heat exchanger and 

compared the consumption to an electric air conditioning/gas furnace system. The prototype home 

is a suburban residence in Memphis, TN. The subject property is studied as a retrofit application. 

In order to make the simulation more customized, a simulation template is created allowing inputs 

for local soil properties, actual heating and cooling load magnitudes, resulting in borefield 

parameter calculations. With this template, other locations can be evaluated following the same 

model. Here, the first objective is to analyze the change in energy consumption with the installation 

of the high efficiency water-to-air heat pump with ground heat exchanger. The consumption 

savings will then be aligned with the capital investment, utility cost data, and ultimate payback 
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period to reveal the home’s viability for a geothermal system implementation. Presentation of the 

whole life cycle cost is revealed for this alternate HVAC system. 

2.2 Building Description of Suburban Residence 

The prototype model is a residential building located in Memphis, TN. The home resides 

at elevation 265 ft above sea level and is in the suburbs terrain classification. The conditioned 

building living area is 2401 ft2. Construction features include an unconditioned crawlspace and 

attic. The existing heating system uses 100% natural gas and has a design nominal capacity of 22.2 

kBtu/hr. The existing cooling system uses 100% electricity. For the cooling system, the design 

cooling capacity is 2.03 tons, coefficient of performance (COP) of 3.97. Heating and cooling fan 

air flow rate is 825 CFM. The prototype home is shown in Figure 2.1, retrieved from the DOE 

Residential Prototype Building Models [37]. 

 

Figure 2.1 Case Study Residence, Gas Furnace/Crawlspace, Memphis, TN 

Prototype home graphic from Trimble SketchUp 2018 3D Design Software. 

 

A comparison was completed to validate the energy use intensity (EUI) of the baseline 

prototype model through EnergyPlus™ with the published data in the U.S. DOE’s Building 
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Performance Database (BPD) [38]. Filters included single-family, detached residences in Climate 

Zone 3A (warm, humid) where Memphis, TN is located. As Figure 2.2 displays, the highest 

percentage of homes reveal an EUI value of 62 kBtu/ft2/year and median value of 91 kBtu/ft2/year. 

Figure 2.2 Histogram of Published EUI Values for Residential Buildings in Climate Zone 3A  

[38] 

 

 

The EUI determined through the EnergyPlus™ simulation of the baseline model revealed 

a source energy use intensity value of 77. The simulated value does fall within the expected range 

as published through the BPD. The alternate geothermal energy source system modeled within 

drops the EUI value for this prototype model to 67, representing an improved energy use system. 
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2.3 Geothermal System Analysis 

2.3.1 Geothermal Heat Pump System Description 

The geothermal heat pump system is represented by the schematic in Figure 2.3. The 

demand side is a single zone living unit, and the source side is the ground heat exchanger. The heat 

pump integrates the source side (ground) and the demand side (zone). The source side and demand 

side intersect at the water to air heat pump, operating in one direction during the heating season 

and in reverse during the cooling season. 

2.3.1.1 Heating Mode 

In the cold months, the ground source heat pump operates in heating mode. In heating mode, the 

source side provides heat from the ground to deliver to the water source heat pump by absorption 

by the water in the ground heat exchanger. Within the heat pump, the refrigerant coil interacts with 

the demand side, or zone, through an air handling unit (AHU) and interacts with the source side at 

the condenser. The refrigerant absorbs heat from the ground water through the condenser, is 

superheated by the compressor, then runs through the AHU where a fan will blow the cooler zone 

air over the hot refrigerant coil. It is through the AHU that outside air (OA), return air (RA), and 

exhaust air are maintained at design requirements. Depending on the outside air temperature, a 

supplemental heating coil often augments the heat available from the heat pump. The refrigerant 

transfers heat to the cool air, thus heating the air and delivering it to the zone. The refrigerant 

exiting the zone is further cooled by drop in pressure by an expansion valve, then travels back to 

the condenser to receive heat from the ground water. This begins the process all over again. For 

the prototype home in Memphis, TN, the heating months are October through April. Days in May 

vary, sometimes requiring heating, sometimes cooling, or neither, depending on the homeowner’s 
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comfort preferences. The heating temperature setpoint for the EnergyPlus™ simulation is an inside 

air temperature of 75°F. If the thermostat falls below this setpoint, the heating system will activate. 

2.3.1.2 Cooling Mode 

In warm months, the ground source heat pump operates in cooling mode. In cooling mode, 

the source side acts as a heat sink that will receive heat absorbed from the water source heat pump. 

Same as in heating mode, within the heat pump, the refrigerant coil interacts with the demand side, 

or zone, through an AHU and interacts with the source side at the condenser. However, the system 

operates in reverse in cooling mode. The refrigerant rejects heat to the ground water through the 

condenser, is further cooled by drop in pressure by an expansion valve, then runs through the AHU 

where a fan will blow the warmer zone air over the cool refrigerant coil. The refrigerant absorbs 

heat from the warm air, thus cooling the air and delivering it to the zone. The hot refrigerant exiting 

the zone is superheated by the compressor, then travels back to the condenser to reject heat to the 

ground water, thus cooling the refrigerant. This begins the process all over again. For the prototype 

home in Memphis, TN, the cooling months are June through September. May and September vary, 

sometimes requiring cooling, sometimes heating, or neither, depending on the homeowner’s 

comfort preferences. The cooling temperature setpoint for the EnergyPlus™ simulation is an inside 

air temperature of 75°F. If the thermostat rises above this setpoint, the cooling system will activate. 
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Figure 2.3 Geothermal Heat Pump System Schematic [39] 

 

2.3.2 Building Model Analysis Materials and Methods 

Using the heat available underground may provide the solution to high energy costs 

resulting from heat generation. The scope of this investigation is a residential building in Memphis, 

TN. A common electric air conditioning cooling system and natural gas furnace heating is replaced 

with a high-efficiency heat pump and ground heat exchanger. Materials and methods of 

investigation were executed in a logical sequence, with a series of inputs and outputs throughout. 
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Calculations of required borehole length as presented by Philippe et al. [35], where vertical 

geothermal borefield design process is shown in detail and outlined in this chapter. The simulation 

engine employed is the EnergyPlus™, a whole building energy analysis tool by the U.S. 

Department of Energy. Reference files and additional studies by Kang and Cho [40] provide useful 

guidance on ground source heat pump modeling. Table 2.1 outlines the chronology of steps 

employed for this study. The steps highlight the major action items and do not highlight 

intermediate components critical to the major action items. 

Table 2.1 Chronological Steps in Analysis Employed in This Study 

STEP METHOD  

1 Collect prototype home and weather data  

2 Simulate energy use of baseline electric/gas heating and cooling system 

3 Gather local soil characteristics such as porosity, classification type, and diffusivity 

4 Calculate required vertical borehole length to accommodate heating and cooling loads 

5 Retrofit prototype EnergyPlus™ home with geothermal heat pump system  

6 Simulate retrofit prototype home with geothermal system, using inputs from previous steps 

7 Gather energy use information for geothermal system and compare to baseline system 

8 Calculate annual savings based upon local utility rates 

9 Evaluate capital investment and annual savings to calculate payback period  

10 Conclude whether payback period is acceptable or unacceptable to consumers 

11 
Determine required financial assistance package to achieve a consumer accepted payback 

period 

 

EnergyPlus™ platform performed the computer-aided annual simulation, along with 

spreadsheet calculators provided by EnergyPlus™ to generate heat pump coefficient input data. 
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The input coefficients are generated by the manufacturer’s heat pump performance curves. With 

the performance characteristics at multiple input parameters, the coefficients are calculated 

without heat transfer equations. Entering water temperature, water flow rate, entering air 

temperature, cooling or heating capacity, power input, and energy efficiency ratio at up to 7 data 

points generates the equation coefficients for a particular heat pump. These input coefficients are 

required for use of the Water-to-Air Heat Pump Equation Fit model in the software. The high-

efficiency heat pump used in this model is the Bosch Greensource™ SM Series Residential 

Geothermal Heat Pump SM036 [41]. The EnergyPlus™ simulation of this prototype home 

determined the values of 𝑞𝑦, 𝑞𝑚 and 𝑞ℎ. These values are the yearly, monthly, and hourly ground 

heat loads, respectively, that will later be inputs for designing the total ground borehole length.  

The United States Department of Agriculture Natural Resources Conservation Service 

provides interactive soil survey across the United States [42]. For the Memphis, TN metropolitan 

area, the predominant soil type identified is silt loam.  Interactive map of the Memphis area is 

shown in Figure 2.4, identifying the analysis region for soil composition. By identifying an Area 

of Interest (AOI) through the interactive tool, a soil map tool reveals the predominant soil type. 

The soil map quantifies the number of acres within the AOI that are classified as each soil type. 
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Figure 2.4 Memphis Metropolitan Area of Interest (AOI) for Soils 

Graphic created by overlaying the zoomed in AOI from the Web Soil Survey onto a map of the 

United States. United States Department of Agriculture (USDA), “Web Soil Survey.” [Online]. 

Available: https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. [Accessed: 25-Feb-

2020]. 

 

This case study employs the sizing calculations presented by Philippe et al. [35] for a 

vertical geothermal borefield. Using the soil properties and facility loads, determination of the 

required borehole length is given by Equation 2.1: 

 

𝐿 =  
𝑞ℎ𝑅𝑏 + 𝑞𝑦𝑅10𝑦 + 𝑞𝑚𝑅1𝑚 + 𝑞ℎ𝑅6ℎ

𝑇𝑚 − (𝑇𝑔 + 𝑇𝑝)
 

(2.1) 

where 

𝑞𝑦 is the yearly average ground heat load [W] 

𝑞𝑚 is the highest monthly ground heat load [W] 



www.manaraa.com

 

33 

𝑞ℎ is the peak hourly ground load [W] 

𝑅𝑏 is the effective borehole thermal resistance [m-K/W] 

𝑅10𝑦 is the effective ground thermal resistance corresponding to 10 years [m-K/W] 

𝑅1𝑚 is the effective ground thermal resistance corresponding to 1 month [m-K/W] 

𝑅6ℎ is the effective ground thermal resistance corresponding to 6 hours [m-K/W] 

𝑇𝑚 is the mean fluid temperature in borehole [°C] 

𝑇𝑔 is the undisturbed ground temperature [°C] 

𝑇𝑝 is the temperature penalty for multiple boreholes [°C] 

The values of qy, qm, and qh are extracted from EnergyPlus™ simulation of the original 

case study prototype home’s annual energy consumption. Data was analyzed for yearly, monthly, 

and hourly heating and cooling loads, respectively. Effective ground thermal resistances 

corresponding to 10 years, 1 month, and 6 hours are determined by Equation 2.2 through Equation 

2.4: 

 

 

 

𝑅10𝑦 =
1

𝑘
𝑓10𝑦(𝛼, 𝑟𝑏𝑜𝑟𝑒) (2.2) 

𝑅1𝑚 =
1

𝑘
𝑓1𝑚(𝛼, 𝑟𝑏𝑜𝑟𝑒) (2.3) 

𝑅6ℎ =
1

𝑘
𝑓6ℎ(𝛼, 𝑟𝑏𝑜𝑟𝑒) (2.4) 

The correlation function in Equation 2.5 uses the ground thermal diffusivity, α, and 

borehole radius to determine ground thermal resistances over the desired time durations. The 

correlation factors are shown in Table 2.2. Thermal diffusivity of silt loam soil is 0.042760 m2/day 

as published by the International Ground Source Heat Pump Association [43]. 
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𝑓 = 𝑎0 + 𝑎1𝑟𝑏𝑜𝑟𝑒 + 𝑎2𝑟2
𝑏𝑜𝑟𝑒 + 𝑎3 ∝ +𝑎4 ∝2+ 𝑎5𝑙𝑛(∝) + 𝑎6𝑙𝑛(∝)2 + 𝑎7𝑟𝑏𝑜𝑟𝑒

∝ +𝑎8𝑟𝑏𝑜𝑟𝑒𝑙𝑛(∝) + 𝑎9 ∝ 𝑙𝑛(∝) (2.5) 

 

 

Table 2.2 Correlation Factors for f10y, f6m, f1h [42] 

 f6h f1m f10y 

a0 0.6619352 0.4132728 0.3057646 

a1 -4.815693 0.2912981 0.08987446 

a2 15.03571 0.07589286 -0.09151786 

a3 -0.09879421 0.1563978 -0.03872451 

a4 0.02917889 -0.2289355 0.1690853 

a5 0.1138498 -0.004927554 -0.02881681 

a6 0.005610933 -0.002694979 -0.002886584 

a7 0.7796329 -0.6380360 -0.1723169 

a8 -0.3243880 0.2950815 0.03112034 

a9 -0.01824101 0.1493320 -0.1188438 

Undisturbed ground temperature, Tg, values published by Virginia Tech [44] reveal 62°F 

[16.67°C] in Memphis, TN. Nationwide temperature data is shown in Figure 2.5. 
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Figure 2.5 Contiguous United States Mean Annual Earth Temperature Map [44] 

 

In a publication in the Journal or Hydrometeorology [45], a simple model of determining 

soil conductivity is given by: 

 

 

𝑘 =  [
1.5(1 − 𝜃𝑠) + 1.3𝜃𝑠𝑆𝑟

0.75 + 0.65𝜃𝑠 − 0.4𝜃𝑠𝑆𝑟
] (0.4186) 

(2.6) 

Where k is soil conductivity in [W/m-K], 𝜃 soil volumetric water content in [in/in], 𝜃𝑠 is 

the saturated porosity in [in/in], and 𝑆𝑟 =
𝜃

𝜃𝑠
 . The value of 𝜃 is location specific and determined 

from the Web Soil Survey provided by the USDA Natural Resources Conservation Service [42]. 

It was studied and published for all regions of Tennessee by the University of Tennessee 
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Agricultural Experiment Station [46]. Published values for the Memphis area vary based upon soil 

depth, slight variations in soil texture, and the lab sample series. A value of θ = 0.271 is used for 

this study because it occurs at a depth greater than 40 inches in silt loam, and is a respectable 

midrange value for the soil sample series.  

The value 𝜃𝑠 for various common soil types is published by [45], as shown in Table 2.3.  

Table 2.3 Saturated Porosity by Soil Texture 

Soil. No. Texture Sand (%) Silt (%) Clay (%) θs 

1 Sand 94 1 5 0.405 

2 Sand 93 1 6 0.432 

3 Sandy loam 67 21 12 0.419 

4 Loam 40 49 11 0.456 

5 Silt loam 27 51 22 0.483 

6 Silt loam 11 70 19 0.479 

7 Silty clay loam 19 54 27 0.491 

8 Silty clay loam 8 60 32 0.507 

9 Clay loam 32 38 30 0.522 

10 Silt loam 2 73 25 0.554 

11 Loam 50 41 9 0.489 

12 Sand 92 7 1 0.415 

B. Tong, “An Empirical Model for Estimating Soil Thermal Conductivity from Soil Water Content and Porosity,” J. 

Hydrometeorol., vol. 17, p. 602, 2016. 

 

Effective borehole thermal resistance, Rb, given by Equation 2.7 assumes inner pipe radius 

0.0137 m, outer pipe radius 0.0167 m, U-tube distance 0.0511 m, and grout thermal conductivity 

2.07 W/m-K as published by [12] for thermally enhanced bentonite grout. Ground thermal 

conductivity, k, is determined from Equation 2.7 as previously explained. 

 

𝑅𝑏 = 𝑅𝑔 +
𝑅𝑝 + 𝑅𝑐𝑜𝑛𝑣

2
 (2.7) 
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𝑅𝑝 =

ln (
𝑟𝑝𝑖𝑝𝑒,𝑒𝑥𝑡

𝑟𝑝𝑖𝑝𝑒,𝑖𝑛
)

2𝜋𝑘𝑝𝑖𝑝𝑒
 (2.8) 

 

 

𝑅𝑔 =
1

4𝜋𝑘𝑔𝑟𝑜𝑢𝑡
[𝑙𝑛 (

𝑟𝑏𝑜𝑟𝑒

𝑟𝑝𝑖𝑝𝑒,𝑒𝑥𝑡
) + 𝑙𝑛 (

𝑟𝑏𝑜𝑟𝑒

𝐿𝑈
) + (

𝑘𝑔𝑟𝑜𝑢𝑡 − 𝑘

𝑘𝑔𝑟𝑜𝑢𝑡 + 𝑘
) 𝑙𝑛 (

𝑟4
𝑏𝑜𝑟𝑒

𝑟4
𝑏𝑜𝑟𝑒 − (

𝐿𝑈

2
)

4)] 
(2.9) 

𝑅𝑐𝑜𝑛𝑣 =
1

2𝜋𝑟𝑝𝑖𝑝𝑒,𝑖𝑛ℎ𝑐𝑜𝑛𝑣
 

(2.10) 

where 

k is the ground thermal conductivity [W/m-K]. 

α is the ground thermal diffusivity [m2/day]. 

𝑟𝑏𝑜𝑟𝑒 is the borehole radius [m]. 

𝑓 is the correlation function. 

𝑘𝑔𝑟𝑜𝑢𝑡 is the thermal conductivity of the grout [W/m-K]. 

𝑟𝑝𝑖𝑝𝑒,𝑒𝑥𝑡 is the outside radius of the pipe [m]. 

𝑟𝑝𝑖𝑝𝑒,𝑖𝑛 is the inside radius of the pipe [m]. 

𝐿𝑈 is the center-to-center distance between the pipes [m]. 

ℎ𝑐𝑜𝑛𝑣 is the convective film coefficient [W/m2-K]. 

 The simulation laminar flow where ℎ𝑐𝑜𝑛𝑣 = 100 W/m2-K [17.6 Btu/hr-ft2-°F]. Using 

Equations 2.2 through 2.10, all data was calculated for inputs to Equation 2.1. The resulting 

borehole depth for a single, vertical ground heat exchanger pipe is L = 301 m. This result is specific 

to the Memphis, TN case study prototype home heating and cooling loads, soil properties, and 

local weather data. 
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Additional soil property used in reference for EnergyPlus™ input parameters is soil 

density, ρ, from Structural Engineering Resources [47]. Silt loam density 1380 kg/m3 is displayed 

in Table 2.4. 

Table 2.4 Density of Different Soil Types 

Soil Type ρ [kg/m3]  

Sand  1430 

Loamy sand  1430 

Sandy loam  1460 

Loam  1430 

Silty loam  1380 

Silt  1380 

Sandy clayey loam  1500 

Clayey loam  1390 

Silty clayey loam  1300 

Silty clay  1260 

Sandy clay  1470 

Clay  1330 

StructX, “Density Ranges for Different Soil Types.” [Online]. Available: 

http://structx.com/Soil_Properties_002.html. [Accessed: 25-Feb-2020]. 

 

The value of ground specific heat capacity, cp, is determined by Equation 2.11 using the 

silt loam density, ground thermal conductivity from Equation 2.6, and ground thermal diffusivity, 

α: 

 

 

𝑐𝑝 =
𝑘

𝛼𝜌
 

(2.11) 

Spreadsheet calculations shown in Table 2.5 display the inputs to EnergyPlus™ as 

discussed through the previous equations and calculations. 



www.manaraa.com

 

39 

Table 2.5 Case Study Prototype Home Input Calculations Spreadsheet 

Calculations Spreadsheet Template – Memphis, TN Location Shown 

Set of Inputs 

Parameter Variable Value Units 

Heat Pump Characteristics [41] 

Nominal Capacity Cap 10.55 kW 

Heating Coefficient of Performance  COPH 4.4 [-] 

Cooling Coefficient of Performance  COPC 6.153 [-] 

Ground Loads 

Peak Hourly Ground Load qh 6970 W 

Monthly Ground Load qm 1922 W 

Yearly Average Ground Heat Load qy 267 W 

Parameters needed to Calculate k 

Volumetric Water Content θ 0.271 m/m 

Porosity θ s 0.483 m/m 

Ration of θ to θ s Sr 0.5611 [-] 

Parameters needed to Calculate R6h, R1m, and R10y 

Correlation Factor for R6h f6h 0.1856399 [-] 

Correlation Factor for R1m f1m 0.3484745 [-] 

Correlation Factor for R10y f10y 0.3813252 [-] 

Ground Properties 

Ground Thermal Conductivity k 0.49406 W/m-K 

Ground Thermal Diffusivity α 0.042760 m2/day 

Ground Specific Heat Capacity cp 998283.62 J/kg-K 

Undisturbed Ground Temperature Tg 16.67 °C 

Fluid Properties 

Thermal Heat Capacity cp 4200 J/kg-K 
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Table 2.5 (continued) 

Total Mass Flow Rate / kW of Peak Hourly Ground Load mfls 0.05 kg/s-kW 

Max/Min Heat Pump Inlet Temperature Tin,HP 37.1 °C 

Borehole Characteristics 

Borehole Radius rbore 0.0600 m 

Pipe Inner Radius rpipe,in 0.0137 m 

Pipe Outer Radius rpipe,ext 0.0167 m 

Grout Thermal Conductivity kgrout 2.07 W/m-K 

Pipe Thermal Conductivity kpipe 0.38 W/m-K 

U-Tube Distance LU 0.0511 m 

Convective Film Coefficient hconv 1000 W/m2-K 

Set of Results 

Parameter Variable Value Units 

Calculation of Effective Borehole Thermal Resistance 

Convective Resistance Inside Each Tube Rconv 0.011617 m-K/W 

Pipe Resistance Rp 0.082933 m-K/W 

Grout Resistance Rg 0.056129 m-K/W 

Effective Borehole Thermal Resistance Rb 0.103404 m-K/W 

Calculation of Effective Ground Thermal Resistance 

Effective Ground Thermal Resistance Correlating to 6h R6h 0.3757451 m-K/W 

Effective Ground Thermal Resistance Correlating to 1m R1m 0.7053312 m-K/W 

Effective Ground Thermal Resistance Correlating to 10y R10y 0.7718228 m-K/W 

Total Length Calculation Assuming No Borehole Thermal Interference 

Heat Pump Outlet Temperature Tout,HP 28.8 °C 

Average Temperature of Fluid in the Borehole Tm 32.95 °C 

Borehole Length L 301.0 m 

 

2.4 Incentive and Payback Analysis 

2.4.1 Incentive Analysis 

Once system performance data is calculated, payoff period for residential systems will 

drive the viability of execution. This payoff calculation depends on annual savings and federal and 
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state monetary incentive programs. Annual savings in dollars per year relies on the electricity cost 

by state, shown in Table 2.6 below for a sampling of states, published by the U.S. Energy 

Information Administration [48]. 

Table 2.6 Electricity Prices by State Current December 2019 [48] 

State Cost [$/kWh] 

Tennessee 0.1070 

Maine 0.1680 

Florida 0.1167 

Minnesota 0.1372 

Arizona 0.1326 

United States Energy Information Administration, “Electricity Data Browser,” October 2008. [Online]. Available: 

https://www.eia.gov/electricity/data/browser/. [Accessed: 17-Feb-2019]. 

Federal and state financial incentive programs can drastically reduce the capital cost 

investment for various renewable energy home upgrades. Table 2.7 summarizes the applicable 

programs to this study in technology, sector, and program type presented by NC Clean Energy 

Technology Center’s DSIRE® database [49]. For comparison, several states’ incentives are  

displayed and the variety is clear in type and monetary value. Tax exemptions and rebates are as 

low as $100 in Minnesota and as high as $3,000 in Maine, both in addition to the Federal 

Residential Renewable Energy Tax Credit.  



www.manaraa.com

 

42 

Table 2.7 Example of Incentive Programs by State [49] 

 Program Incentive 

Federal 

Incentive 

Residential Renewable Energy 

Tax Credit 
Tax credit of 30% of investment 

Tennessee 
TVA Partner Utilities eScore 

Program 
Geothermal Heat Pump: $250/Unit 

Maine 
Efficiency Maine Residential 

Home Energy Savings Program 

Ultra-Low Greenhouse Gas Central 

Heating Systems: One third of the 

installation cost up to $3,000 

Florida 
Property Tax Abatement for 

Renewable Energy Property 
100% property tax exemption 

Minnesota 

Minnesota Power Residential 

Energy Efficiency Rebate 

Program 

Ground Source Heat Pump: $100-$200 

per ton plus $200 for ECM motor 

Arizona 
Energy Equipment Property Tax 

Exemption 
100% of increased value 

NC Clean Energy Technology Center, “Programs (TN),” DSIRE, 1995. [Online]. Available: 

http://programs.dsireusa.org/system/program?fromSir=0&state=TN. [Accessed: 17-Feb-2020] 

 The Tennessee incentive programs are highlighted in this study. Results across the nation 

will vary drastically depending upon the annual energy savings by geographical location, as well 

as the state’s incentive programs. Maine, Florida, Minnesota, and Arizona prototype home 

simulations, utility cost data, and incentives will determine the viability of ground source heat 

pump technology in their respective regions. 

2.4.2 Payback Analysis 

The second objective of this research is to determine the payback period for homes 

considering a transition to renewable ground source heat pump energy systems. 

2.4.2.1 Simple Payback Period (SPP) [50]  

A recent investigation on the viability of geothermal heat pumps in the Unites States is 

reported in [1]. The study revealed installation cost for residential geothermal systems within the 

range $3,000 - $5,000 per ton of cooling. That reported value of cost data is used within this study, 

http://programs.dsireusa.org/system/program/detail/5442
http://programs.dsireusa.org/system/program/detail/5442
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however comparative cost data may be extracted from RSMeans® Mechanical Cost Data or 

through interviews with location-specific contractors. Key differences distinguish the study in [1] 

and this research. A different computer-aided simulation program ran simulations, a specific 

ground loop sizing procedure in was used [35], savings focused on the individual home savings 

rather than nationwide savings, all regional incentives were considered, and detailed payoff data 

was calculated. Further, itemizing costs into materials, ground loop cost per foot, and heat pump 

equipment will allow for greater cost customizing by geographical location. A commercial sector 

itemization is demonstrated by Kavanaugh et al. [4] provides a useful template for future study. 

Interviews with contractors within the regions of study will provide the most accurate construction 

cost data. For the 2401ft2 prototype home in Memphis, TN, approximately a 4-ton capacity heat 

pump was used in the simulation. Using the midrange value of $4,000, the installation will cost 

the homeowner $16,000. This number will vary depending on parameters including, but not 

limited to borefield arrangement, equipment selected, and local retail prices. The value $16,000 is 

used in this study to calculate a simple payback period for the prototype home, using Equation 

2.12 and Equation 2.13 Defining 𝑖𝑛1 as the 30% Residential Renewable Energy Tax Credit and 

𝑖𝑛2 as the $250 TVA Partner Utilities eScore Program rebate, the initial net capital cost is 

calculated by: 

 

 

𝑆𝑃𝑃 =
𝐶𝑜𝑠𝑡𝑐𝑎

𝐴𝑆
 (2.12) 

where Costca is the initial capital cost [$] after incentives, Costcb is the capital cost before 

incentives, ini, are incentives applied, and AS is annual savings [$]. 
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𝐶𝑜𝑠𝑡𝑐𝑎 = (𝐶𝑜𝑠𝑡𝑐𝑏) − ∑ 𝑖𝑛𝑖 (2.13) 

 

2.4.2.2 Discounted Payback Period (DPP) 

While the simple payback period (SPP) is the simplest method of calculating payback period, it 

does not account for the time value of money. Therefore, to more accurately perform a life-cycle 

cost analysis for the ground source heat pump system, a discounted payback period (DPP) analysis 

is also performed. This method accounts for discount rate and inflation.  

The cost left to recover from the initial capital cost after incentives, Costn, is calculated 

using the discounted payback period given by Equation 2.14: 

 

 

𝐶𝑜𝑠𝑡𝑛 =
𝐴𝑆

[(1 + 𝑗) (1 + 𝑖)⁄ ]𝑛
 

(2.14) 

where Costn is the amount left to pay to recover initial investment (remaining deficit) at 

year n, i is the rate of inflation and j is the discount rate. From the Federal Energy Management 

Program’s (FEMP) recent 2018 publication on discount rates, j = 3.0% for this study, and the rate 

of inflation is i = 2.44% [51]. However, in The Office of Management and Budget (OMB) Circular 

A-94, it is recommended to perform the payback analysis with the current year’s real discount rate, 

as well as a real discount rate of 7% [52]. The publication states that the value of j = 7% represents 

the baseline average over the decades. Using both discount rates to calculate separate discounted 

payback periods demonstrates the extreme variability of the payback period calculation due to the 

discount rate employed [53]. Table 2.8 is a summary of parameters.  
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Table 2.8 Definition of Variables Used in Payback Analysis 

Variable Parameter Units 

Costcb Initial Cost Before Incentives [$] 

ini Incentive i Savings [$] 

Costca Initial Cost After Incentives [$] 

AS Annual Savings [$] 

Coste Electricity Cost [$/kWh] 

j Discount Rate [%] 

i Inflation Rate [%] 

Costn Investment Deficit Remaining after Year n [$] 

SPP Simple Payback Period [years] 

DPP Discounted Payback Period [years] 

 

2.5 Results and Discussion 

2.5.1 Energy Savings Analysis 

The first objective of this research was to determine whether energy savings results from 

the replacement of original heating and cooling system in the case study prototype home with a 

ground source heat pump system. EnergyPlus™ simulation results revealed a total annual HVAC 

energy consumption reduction of 26%. This value represents the sum of electric and gas savings. 

The savings shown is for the total facility. Therefore, the savings percentage represents the savings 

on the monthly meter-based electric bill, not just the heating and cooling savings. For the average 

homeowner, the bottom line consumption savings is what matters, which is why the other 

components were not excluded from this meter total. Other components include interior lighting, 

exterior lighting, fans, pumps, and water systems. Monthly results are shown in Figure 2.6.  
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Figure 2.6 Site Energy Use Comparison Results 
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EnergyPlus™ uses a weather file representing a Typical Meteorological Year (TMY), so 

energy reduction will vary depending on actual weather conditions in the area. The case study 

prototype home also assumes occupancy of three people, differing from actual occupancy of many 

candidate homes for geothermal technology. As shown in Figure 2.6, the energy consumption is 

reduced every month of the simulation, ranging from the smallest savings of 6 kWh in May, to the 

largest of 2115 kWh in January. 

Looking at the total annual use for a typical meteorological year in Figure 2.6, an overall 

energy consumption reduction of 26% is achieved when comparing the original electric cooling / 

gas furnace heating system to the retrofit geothermal cooling / heating system. To further explain 

the sources of the annual energy use changes as shown in the meter totals in Figure 2.6, a more 
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detailed analysis of the source components is shown in Table 2.9. Note the total values in Figure 

2.6 represent the total site energy and meter readings the homeowner is ultimately billed upon, but 

the values in Table 2.9 represent the itemized use by component.  

Table 2.9 Whole Facility Site Energy Use Comparison 

Component Baseline System [kWh] Geothermal System [kWh] % Difference 

Heating 7,581 1,022 -87% 

Cooling 3,095 3,274 +6% 

Fans 1,163 366 -69% 

Pumps 0 390 Increase from Zero 

Other Componentsa 14,293 14,292 0% 

a Other components include interior and exterior lighting, interior equipment, and water heating systems 

 

From the baseline HVAC system to the updated geothermal system, the most significant 

decrease in energy is from heating. As can be seen numerically in Table 2.9 and visually in Figure 

2.7, the subject residence is clearly a heating-dominant building. Therefore, it can be predicted that 

savings will be significant in follow-on studies of residences in cold winter climates. Fans also 

result in decreased energy. Due to the ground water circulation, an increase from zero is seen in 

pumps. The results confirm a total source energy use reduction of 26%. Figure 2.7 depicts a 

graphical representation of the usage data. 

 



www.manaraa.com

 

48 

 

Figure 2.7 Site Energy End Use Comparison by Component 
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In the cooling mode, there is a slight increase in energy use. This increase may be justified 

by taking a closer look at the water temperatures exiting the GHE condenser. In Figure 2.8, an 

hourly record is investigated for August 5th through August 11th. These days were chosen because 

they exhibit some of the hottest days of the summer. Here, the outlet temperature from the GHE is 

graphed with the outdoor dry bulb air temperature. In the baseline electric cooling HVAC system, 

air is the fluid used to condense the hot refrigerant returning from the zone. Therefore, the outdoor 
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dry bulb air temperature is the inlet temperature of the fluid (air) across the refrigerant coils. 

However, with the geothermal heat pump system, water is the fluid used to condense the hot 

refrigerant returning from the zone. Therefore, the outlet temperature of the GHE water is the inlet 

temperature of the fluid (water) across the refrigerant coils. 

 

Figure 2.8 Inlet Temperature Comparison in Peak of Summer 

Date range for peak of summer is August 5 – August 11.  

 

As seen in Figure 2.8, during the hottest days of the year, the GHE outlet temperature can 

become hotter than the dry bulb air temperature. This occurs primarily during the night hours, as 

designated for one of the six days in Figure 2.8. The black dots represent the time at which the 

GHE outlet temperature drops below the dry bulb air temperature during the daytime or exceeds 



www.manaraa.com

 

50 

the dry bulb air temperature at nighttime. While Figure 2.8 only zooms in on a 6-day summer span 

on hot August nights, similar temperature differentials occur throughout the summer months. As 

a result of the temperatures displayed, the ground source heat pump would use more electric energy 

for cooling on these hot summer nights than the baseline electric cooling system, simply because 

the inlet temperature to the condenser is higher.  

In the winter months despite the dramatic decrease in energy use for heating, electricity is 

needed to operate the supplemental heating coil in the heat pump. The supplemental heating coil 

is shown in Figure 2.3 and is operated only when the air outlet temperature from the heat pump 

heating coil does not meet the zone setpoint. In this simulation, the supplemental heating coil was 

operated in January and February. On the days the supplemental heating coil was operated, the 

highest outdoor dry bulb air temperature was 24°F. 

Overall, the achieved total energy use reduction is attributed to the design principles of the 

heat pump. With a natural gas heating system, the heat must be created first, then transferred to 

the zone air. In contrast, the ground source heat pump system borrows the heat from the Earth to 

transfer to the zone. Similarly, in the cooling season, an electric cooling coil must rely on the 

arduous work of the condenser fan to dispel heat from the refrigerant. But the ground source heat 

pump system simply transfers that heat absorbed from the zone air back to the Earth as it acts as a 

heat sink. In summary, the heat pump only works to transfer the heat from one location to another, 

while a traditional HVAC system must create the transfer medium. As shown in Figure 2.9, the 

Earth acts as a free heat sink. 
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Figure 2.9 Inlet and Outlet GSHP Condenser Temperatures 
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In the heating season, the inlet temperature to the ground heat exchanger is lower than the 

outlet temperature, due to the borrowing of heat to heat the zone. In the cooling season, the inlet 

temperature to the ground heat exchanger is higher than the outlet temperature, due to the rejection 

of heat to cool the zone. This data from the EnergyPlus™ simulation verifies the proper and 

effective functioning of the GSHP system. 

2.5.2 Payback Period Analysis 

Using Equation 2.12, the initial capital investment after incentives was calculated with 

Costcb = $16,000, in1 = 30% tax rebate and in2 = $250 rebate. The incentives for Tennessee are 

defined in Table 2.7. Therefore, 𝐶𝑜𝑠𝑡𝑐𝑎 = $16,000 − [(0.30)($16,000) + $250] = $10,950. 
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Annual savings (AS) is determined by multiplying the annual energy consumption savings [kW] 

by the local utility rates [$/kWh] shown in Table 2.6. As displayed in Figure 2.7, the total HVAC 

annual metered energy consumption reduction for the prototype home during a Typical 

Meteorological Year (TMY) is 6,780 kWh. Therefore, AS =  (6,780 kWh)($0.1070)  =

 $725 per year for the prototype home. Equation 2.12 is then used to determine the SPP. 

It should be noted that operation and maintenance costs were not considered in the payback 

period analysis. ASHRAE Applications 2019 [54] states that estimating operation and 

maintenance costs for HVAC systems can be erroneous due to the many factors that require 

consideration. These factors include, but are not limited to, service environment, local seasonal 

conditions, geographical location, and the regional market cost of labor. For these reasons, this 

study treats operation and maintenance costs as a neutral component for the payback period 

analysis. 

Equation 2.14 is used to calculate the DPP for two different discount rates. Figure 2.10 

displays the DPP for each discount rate. 
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Figure 2.10 Discounted Payoff Period Comparison | Memphis, TN 

 

Interestingly, the SPP and DPP with 3% discount rate are comparable. However, using the 

7% discount rate has an immense effect on the projected payback period, extending the duration 

over 25 years. Table 2.10 displays payback period results and comparison. 

Table 2.10 Payback Period Comparison Between SPP and DPP 

Simple 

Payback 

Period (SPP) 

Discounted 

Payback 

Period (DPP) 

 j = 3% j = 7% j = 3%, Acceptable Payback 

15.1 years 15.8 years 25.6 years 7.2 years 

 

Even a simple payoff period of 15.1 years will deter many homeowners from transitioning 

from fossil fuel energy to renewable geothermal energy. The obvious next step is to determine 
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what payback period consumers are willing to accept, and ultimately how this payback period 

translates into increased financial support. Newell and Siikamaki [31] conducted a study surveying 

United States homeowners to define this acceptable payback period for energy efficiency home 

improvements. The technology product proposed in the survey was a high-efficiency water heater. 

A water heater replacement project is smaller in magnitude than an HVAC system replacement 

project, yet they can be compared because annual savings and capital investment are proportional. 

The water heater project costs less, but the annual savings are lower; the geothermal HVAC system 

costs more, but the annual savings are higher. For this reason, the payback period results from 

Newell [31] are used for this analysis. The survey stated that homeowners desire to recover the 

initial investment in energy efficiency projects in a mean of 3.5 years and 1.9 years standard 

deviation. Adding one standard deviation is a payback period of 5.2 years, and adding three 

standard deviations is a payback period of 9.2 years. Using the middle value for this example yields 

and acceptable payback period of 7.2 years. Newell [31] proves that this value will vary based 

upon household income, home size, and even race and ethnicity of the homeowner. Using the 

discounted payback period from Section 2.4.2.2 in reverse yields an initial capital investment of 

only $7,400 to recover the initial investment in 7.2 years. For a system that was estimated to cost 

$16,000 before incentives, a financial support package of $7,400

$16,000
=46.25% would be necessary. This 

acceptable payback and cash flow of this ideal scenario is shown on Figure 2.10. By the year 2035, 

the homeowner that received the acceptable payback scenario will have recovered the initial 

investment plus $8,730. In addition to the federal government 30% tax rebate, an additional 

16.25% is required for the acceptable payback in this example. When examining other homes and 

climate zones, these values will vary by construction costs and energy savings. 
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As part of a study on geothermal district heating systems, Reber et al. [8] estimated the 

lifetime of a geothermal system to be 30 years. Based on this estimation, a system installed in 2019 

will reach the end of its useful life in 2049. Extrapolating the cash flow analysis in Figure 2.10 to 

the year 2049, Table 2.11 displays the overall savings at the end of the system lifetime for the 

various financial scenarios already discussed. 

Table 2.11 Overall System Lifetime Savings 

Financial Method 
Discount 

Rate 

Pre-Incentive 

Investment 

Post-Incentive 

Investment 

Overall System 

Lifetime Savings 

DPP j = 7% $16,000 $11,450 $5,850 

DPP j = 3% $16,000 $11,450 $17,695 

DPP, Acceptable j = 3% $16,000 $7,400 $21,745 

 

The results of this study demonstrate a significant annual energy consumption reduction 

with a ground heat exchanger heat pump system. The model removes the electric cooling and gas 

heating system, replacing it with a high-efficiency heat pump and ground heat exchanger. This 

reduction of energy consumption aligns with homeowner cost savings resulting from lower annual 

utility costs. For residents in Memphis, Tennessee, this data may be used to make decisions on 

existing system modifications. However, whether residents choose to implement a geothermal 

system in their homes will largely depend upon initial installation cost, all applicable tax rebates 

and incentives, and ultimate payback period. 

It should be noted that the results are based upon the middle of the range of installation 

cost per ton, reported by Lim [1].  Factors setting this study apart from existing studies are (1) 

location-specific heating and cooling load determination through EnergyPlus™ simulation, (2) 
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detailed ground loop parameters considering geographical soil characteristics, and (3) 

incorporation of state and local financial incentives in payback period calculation. At this time, the 

possibility of an alternative, more affordable energy system is verified from the performance 

standpoint. Using the Memphis, TN model as a baseline design, the scope of this research can 

widen to other residential areas in diverse climate and geographical areas. The potential in other 

climate zones will vary greatly as will weather data, soil properties driving performance, and state-

specific incentive programs. Follow on studies will investigate additional climate regions, as well 

as customizing the system design to reduce payoff period. 

Computer-aided simulations are a valuable tool for predicting experimental data. The 

experimental data validating the results in this study can be collected as residential geothermal 

heat pump systems are put into practice. The valuable contribution of this study is the definition 

of a prescriptive procedure outlined in Table 2.1 and executed through the Memphis, TN example. 

is delivery of a procedure. This procedure provides a template for homeowners to become more 

informed on the technical and economic feasibility of residential geothermal technology at their 

home and community. Through EnergyPlus™, any residential building’s features, construction 

characteristics, and geography can be input for a customized energy savings analysis. After savings 

are known, the template provides a guide to calculate the whole life cycle cost of the energy 

efficiency upgrade. The procedure will predict the real applications, allowing a potential customer 

gain confidence in the decision to retrofit an existing system to a higher efficiency, geothermal 

system.  

 By marrying thorough soil properties data [42], sophisticated borefield design methods 

[35], and economic policies [49], this study delivers a novel procedure template to analyze a 
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diverse spectrum of residential buildings. All the components of an accurate techno-economic 

feasibility of the technology are blended together in this chapter. 

2.6 Chapter Summary 

A prototype home provided by the Department of Energy is the home used in this 

geothermal heat pump energy investigation [37]. The home resides in Memphis, Tennessee. The 

study within provides highly location-specific results due to calculations of exact bore length. This 

design specification is determined by thorough soil property identification by type, density, 

porosity, and undisturbed ground temperature. Actual residence heating and cooling loads were 

used in energy simulations. The union of precise ground characteristics, accurate home energy use, 

and region-specific incentive analysis create a confidently accurate energy consumption savings 

and annual cost savings to the potential customer.  

Modeling and analysis within EnergyPlus™ display evidence of 26% energy use reduction 

when a geothermal heat pump system replaces the original electric cooling and gas furnace heating 

system. Comparison between the initial monthly energy consumption and the modified monthly 

energy consumption reveal the reduction in electric and gas usage. Despite the energy savings, the 

payoff period resulted in a duration of up to 15 years, much longer than many homeowners will 

find attractive. The model was tailored to the soil properties and weather data for Memphis, 

Tennessee. Further investigation will include optimization of the borefield parameters and 

insertion of additional locations’ parameters into the template developed within this study.  

 

  



www.manaraa.com

 

58 

CHAPTER III 

STATE OF THE NATION: CUSTOMIZING ENERGY AND FINANCES FOR 

GEOTHERMAL TECHNOLOGY IN THE UNITED STATES 

RESIDENTIAL SECTOR 

This chapter broadens the work performed in CHAPTER I to climate zones across the 

United States. As proved, geothermal residential heating and cooling systems have undeniable 

potential savings. The possibilities of the energy savings with a geothermal heat pump system is 

well-established in the commercial and residential sectors. Building location has a critical impact 

on the performance of geothermal heat pump systems and magnitude of savings. An important 

contribution of this chapter takes the step past technological optimization to investigate 12 climate 

zones across the contiguous United States. Residential homes within common neighborhoods are 

thoroughly analyzed by considering soil characteristics and home construction features. Within 

these climate zones, federal and all local incentive programs are quantified to determine an 

accurate expectation for capital investment payback period, a critical factor for system 

attractability. Ultimately, a climate zone is classified as either a promising or poor candidate for 

residential geothermal technology based on data from previously conducted human interest polls 

regarding payback period on energy savings investments. With such lasting potential delivered to 

the hands of consumers, geothermal energy use still experiences slow implementation. This 

chapter conducts a study integrating data on technology, finances, and human nature to identify 

the prevailing barrier to widespread geothermal execution. Solid evidence on energy and monetary 
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savings reveals the dominant barriers are initial capital investment and long payback period. This 

chapter highlights the immense positive impact that local incentives have on affecting these two 

prevailing deterrents.   

3.1 Introduction 

This chapter focuses on the energy savings and capital investment of residential buildings 

representing 12 climate zones across the contiguous United States. The objective is to investigate 

climate zones as viable or nonviable in terms of cost and savings. Closing the gap of previous 

studies, this study considers site-specific soil characteristics, home construction materials, and 

local federal financial incentive programs. The buildings representing each climate zone are actual 

residential homes within the respective city limits. The three factors of soil, structure, and 

incentives make significant impacts on the viability of a climate zone for geothermal space heating 

and cooling. This chapter provides knowledge required for an informed, confident choice to be 

made under the roofs of home across the climate zones of the United States.  

Prior research made ardent strides toward the technical feasibility of geothermal space 

heating and cooling. Specifically, geothermal space heating and cooling is achieved with a ground 

heat exchanger (GHE) and water to air heat pump (WAHP). Together, these two components make 

up the geothermal heat pump (GHP), also referred to as ground source heat pump (GSHP). Liu et 

al. [1] presented the most relevant study by investigating buildings in both the commercial and 

residential sectors across the United States in 13 climate zones. The study used county-level energy 

use data and a borehole sized to maintain a range of ground loop water temperatures. The 

simulation tool and method for sizing the heat pump is unknown. Unlike Liu [1], this chapter 

zooms in on a specific residential neighborhood in each city to obtain ground parameters and 

determines heating and cooling loads from a simulation of the existing system in that climate zone. 
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Liu [1] concluded that the knowledge would improve in breadth by a more site-specific GHE 

design as well as consideration of local financial incentive programs. These two recommendations 

are executed in this investigation to achieve more site-specific knowledge. In addition to the loads 

and simulation methods, a properly sized GHE and heat pump has been verified in prior research. 

Sagia et al. [11] emphasized the proper sizing of the GHE for energy savings. The subject of the 

analysis was a building in Greece, but the results are relevant globally. Simulation efforts focused 

on sizing the GHE, but did not attempt to determine the optimal heat pump capacity. The critical 

conclusion to a study by Eslami-Nejad et al. [10] was that a properly sized GSHP makes all the 

difference in  energy consumption. Augmenting methods from Sagia [11] and Eslami-Nejad [10], 

this study performs the simulations with optimal heat pump sizes as dictated by EnergyPlus™ to 

tailor performance and climate zone-specific designs. 

In the investigation, a simple payback (SPP) period method calculated the payback periods. 

The SPP does not consider the time value of money. Use of the SPP for energy investments is a 

better fit for some investigations than others. Zhang et al. [34] conducted a review of incentive 

analysis and payback period for solar photovoltaic system in the U.S. Although the sector was 

commercial rather than residential, Zhang [34] believed the SPP was a suitable method of payback 

analysis because of the long-term variability of available financial incentives. Due to the state-by-

state incentive analysis, the SPP was determined to be a metric indicative of capital investment 

payback period. However, a follow-on study by Zhang et al. [55] added the discounted payback 

period (DPP) tool to the investigation and cash flow analysis. The findings revealed the time value 

of money consideration provided reliable payback periods and lifetime system cashflows. 

Learning from Lim [14] and Zhang [34] [55], this study implements two different payback period 
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methods of calculation that both take into account inflation and the change in value of the current 

U.S. dollar.  

A compelling publication assessed the strategies that current research could be improved. 

In Lim [5], it is suggested that more accurate results for system performance could be achieved 

with simulation tools such as EnergyPlus™, site-specific soil characteristic consideration, and 

local plus federal incentive programs. These three recommendations are active components of this 

study, and were implemented in an investigation by Neves et al. [56] for a single residence in 

Memphis, TN. Results for this climate zone 3A residence proved a 26% energy use savings with 

a geothermal heat pump system over a traditional baseline system. The outcome of the study by 

Neves [56] in one location sparked a desire to perform the analysis nationwide across many climate 

zones, and became the leading motivation for this chapter. To create a logical method of analysis 

of many locations, a study by Zhang et al. [57] provided a valuable guide. A nationwide review of 

combined heat and power (CHP) systems were evaluated for technical and financial performance. 

The structure of the study was mirrored in this investigation by defining many cities with varying 

climate conditions, performing a technical analysis, analyzing applicable incentives both federal 

and local, and defined a payback period. Zhang [57] presented an admirable method of analysis 

for replication for similar energy studies of different renewable technologies and sectors.  

As outlined, the technical knowledge is available, but the financial and site-specific 

customization component is enhanced in this investigation, providing the most comprehensive 

knowledge base for the United States climate zones. The roadmap of this study fills in the details 

introduced. Section 3.2 outlines the strategy of choosing the cities to represent the 12 diverse 

climate zones and ensure high variability. Simulation of the baseline system is performed in 

Section 3.3, as well as the methods for sizing the replacement GSHP system. Payback analysis 
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methods are also introduced in Section 3.3.  Section 3.4 reports the results of the simulations, 

choice of heat pumps by climate zone, and payback period. Conclusions and tactics to use the 

learned knowledge are presented in Section 3.5. Specific objectives are identification of viable 

climate zones for geothermal space heating and cooling based upon techniques more sophisticated 

that previous studies in site selection, space loads profiling, customized GSHP system, and all 

incentive programs included in payback analysis. Simulations result in attractive financial 

propositions, depending on the climate zone. This study provides a comprehensive overview of 

the technical and financial feasibility of geothermal systems in homes representing diverse 

climates, and a guide for analysis methods for future locations. 

3.2 City Selection and Building Description of Suburban Residences 

Identification of representative cities from 12 climate zones was performed by combining 

geographical, temperature, and humidity classifications. Choosing a diverse collection of cities in 

these 3 categories was imperative to this study, as differences in all can greatly affect the viability 

of a region for geothermal heating and cooling technology. Figure 3.1 and Figure 3.2 were used to 

choose 12 cities based on a variety of temperature, humidity, and geographical parameters. Figures 

3.1 and 3.2 were published by U.S. Department of Energy Efficiency & Renewable Energy in their 

Guide to Determining Climate Regions by County [58]. Figure 3.1 groups regions of the 

continental United States together based upon temperature and humidity. 
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Figure 3.1 Climate zones by temperature and humidity [58] 

U.S. Department of Energy, “Guide to Determining Climate Regions by County,” vol. 7.3, no. 

August, 2015. 

 

Information extracted from Figure 3.1 was compared to the data presented in Figure 3.2, 

which provides a nomenclature system for regions of the U.S. by temperature, humidity, as well 

as common latitude. For example, zones 3 and 4 in Figure 3.2 appear as one grouping labeled 

“mixed-humid” in Figure 3.1. Similarly, the “hot-humid” grouping in Figure 3.1 is unmerged in 

Figure 3.2 as Tropical or Subtropical. Therefore, to generate a full array of climactic 

characteristics, cities were chosen with the consultation of both classification techniques. The 

resulting group of 12 cities aims to represent the most diverse collection of climate and 

geographical characteristics. 
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Figure 3.2 Climate Zones by Longitude and Latitude [58]  

U.S. Department of Energy, “Guide to Determining Climate Regions by County,” vol. 7.3, no. 

August, 2015. 

 

Based on the research and classification of climate zones presented in Figure 3.1 and Figure 

3.2, the alphanumeric nomenclature shown in Figure 3.3 was created and is used in this study. The 

number designates the geographical classification by latitude and longitude per Figure 3.1 and 

Figure 3.2 [58]. The letter represents moisture classification A, B, or C. 
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Figure 3.3 Nomenclature Guide for Cities of Interest 

 

Considering all the presented the climate classification research, the 12 cities shown in 

Table 3.1 were chosen to achieve a diverse collection of cities by temperature, humidity, and 

geographical location. Table 3.1 also displays undisturbed ground temperatures of the selected 

cities, as this parameter is significant for the geothermal system analysis [59].  
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Table 3.1 Cities Representing Diverse Climate Regions 

Classification Description 
Moisture 

Classification 
City | State 

Undisturbed 

Ground 

Temperature 

1A Tropical Hot-Humid Moist Miami | FL 62 

3A Subtropical Mixed-Humid Moist Memphis | TN 78 

2B Subtropical Hot-Dry Dry Phoenix | AZ 73 

3B Midlatitude Desert Hot-Dry Dry Las Vegas | NV 69 

3C Mediterranean Hot-Dry Marine Los Angeles | CA 64 

4A Subtropical Mixed-Humid Moist Baltimore | MD 57 

4C West Coast Marine Marine Portland | OR 54 

5B Desert Cold Dry Reno/Tahoe | NV 50 

6B Semi-arid Steppe Cold Dry Helena | MT 47 

5A Continental Cold Moist Des Moines | IA 53 

7A Continental Very cold Moist Duluth | MN 41 

7B Highland Alpine Very Cold Dry Gunnison | CO 52 

 

Figure 3.4 displays the geographical variety of the cities on a map of the United States. 

Cities range far north, south, east, and west. The selection encompasses combinations of 

temperature, humidity, and location to allow a comprehensive analysis of geothermal heating and 

cooling systems by climate zone. 
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Figure 3.4 Map of 12 Diverse Climates [60] 

The graphic was created by labeling the 12 cities of interest on the background climate map of 

the U.S. Map source: T. Abichou, C. Wang, T. Kormi, and J. Chanton, “A novel approach to 

estimate methane oxidation in interim landfill covers across the USA.,” Int. J. Environ. Waste 

Manag., vol. 15, no. June, p. 309, 2015. 

 

To further validate the diversity of the selected cities, the 12 locations were compared by 

seasonal temperatures and relative humidity. The cooling season (summer) was considered 

separately from the heating season (winter) through the analysis of cooling degree days (CDD) 

and heating degree days (HDD), respectively. CDD and HDD values are a measure of the 

extremity of temperatures in a given location. Both are measured by comparing a day’s average 

temperature relative to 65°F. The value of CDD is equal to the number of degrees above 65°F. The 

value of HDD is equal to the number of degrees below 65°F. For example, the mean temperature 

in Memphis, Tennessee on September 27, 2019 was 93°F. Therefore, on this day CDD = 93°F – 
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65°F = 28 CDD [61]. Similarly, the mean temperature in Portland, Oregon on January 16, 2020 

was 37°F. Therefore, on this day HDD = 65°F - 37°F = 28 HDD. A high value for CDD indicates 

a hotter average temperature, and a high value for HDD indicates a colder average temperature. If 

the CDD and HDD values for a city are low, this measure indicates a milder temperature spectrum. 

For this study, CDD and HDD metrics were summed, by year, for each of the 12 cities [62]. These 

values were graphed along with the city’s average annual relative humidity (RH) published by the 

National Oceanic and Atmospheric Administration Center [63], which recorded morning and 

afternoon average relative humidity readings by month. Using these readings, the values were 

manually averaged over the year to determine the mean annual RH for classification purposes in 

this study. Results for diversity in CDD and humidity are shown in Figure 3.5. In this unique 

graphic, relative humidity is the x-axis and CDD is the y-axis. The crosshatch in the center bisects 

the range of each axis. When plotted on this coordinate system, the locations naturally populate in 

four quadrants. The quadrants are classified as warm/moist, warm/dry, cool/dry, and cool/moist. 

The cool/moist quadrant houses the greatest quantity of cities, but there are extremes in each of 

the four. See Figure A.1 in Appendix A, for a more traditional x-y coordinate graphic for 

displaying diversity in the cooling season. 
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Figure 3.5 CDD vs. Humidity Data Grid 

Cooling degree days data found at: Energy Star, “Degree Days Calculator,” Portfolio Manager. 

[Online]. Available: https://portfoliomanager.energystar.gov/pm/degreeDaysCalculator. 

[Accessed: 25-Feb-2020]. 

 

Complementary to Figure 3.5 showing cooling season data, Figure 3.6 depicts diversity in 

heating data. Relative humidity is the x-axis and HDD is the y-axis. The crosshatch in the center 

bisects the range of each axis. When plotted on this coordinate system, the locations populate all 

four quadrants as they did for CDD data. The quadrants are classified as cold/moist, cold/dry, 

warm/dry, and warm/moist. The warm/moist quadrant houses the greatest quantity of cities, but 

the rest are spread between the remaining three quadrants. 
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Figure 3.6 HDD vs. Humidity Data Grid 

Heating degree days data found at: Energy Star, “Degree Days Calculator,” Portfolio Manager. 

[Online]. Available: https://portfoliomanager.energystar.gov/pm/degreeDaysCalculator. 

[Accessed: 25-Feb-2020]. 

 

The heating season is a significant area of interest for a geothermal heating system, as the 

heat pump eliminates the need for natural gas. Therefore, verifying a diverse collection of cities 

for winter conditions is critical for a comprehensive analysis. Results for diversity in HDD and 

relative humidity are shown in Figure 3.6. As shown, the selection includes cities with high HDD 

and high humidity (Duluth, MN), low HDD and high humidity (Miami, FL), low HDD and low 

humidity (Phoenix, AZ), and high HDD and moderate humidity (Gunnison, CO). Other cities fall 

in between these extremes with one of the two parameters moderate. See Figure A.2 for a more 

traditional x-y coordinate graphic for displaying diversity in the heating season. 
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Aside from the degree days and humidity variation, several other characteristics of the 

location and home itself contribute to the selection diversity. The elevation, annual average air 

temperatures (TOA), and maximum difference in monthly average air temperatures (∆TOA,max) all 

affect the building energy performance. Temperature data is embedded in the prototype home 

construction characteristics building file from the U.S. Department of Energy [37]. Construction 

features also affect the heat transfer characteristics. Window U-factor is a measure of the window 

assembly’s conductance of heat. A higher U-value corresponds to a faster transmission of heat 

through the window assembly, which typically includes ultraviolet coating, two or three panes of 

glazing, and air gaps in between the panes. The U-value and the R-value have an inverse 

mathematical relationship. Therefore, the basement insulation R-value is a measure of the 

material’s resistance to heat transfer. The higher the R-value, the greater the insulating property. 

Conductivity and insulation values are reported through ASHRAE 90.2 Energy-Efficient Design 

of Residential Low-Rise Buildings [64]. A sampling of these characteristics is shown in Table 3.2.  
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Table 3.2 Table of Differences Affecting Home Energy Use 

City | State Elevation  
Window U-

factor  

Basement 

Insulation R-

value  

Annual 

Average TOA 
∆TOA, max 

 [ft] [Btu/h-ft2-°F] [ft2-h-°F/Btu] [°F] [°F] 

Portland | OR 20 0.32 12.9 54.0 28.8 

Miami | FL 36 0.50 0.0 76.1 51.9 

Los Angeles | CA 98 0.35 12.9 62.3 11.3 

Baltimore | MD 148 0.35 12.9 55.7 46.4 

Memphis| TN 266 0.35 12.9 62.6 43.6 

Des Moines | IA 958 0.32 18.9 50.3 55.8 

Phoenix | AZ 1106 0.40 0.0 74.8 43.0 

Duluth | MN 1421 0.32 18.9 39.1 55.4 

Las Vegas | NV 2126 0.35 12.9 67.6 45.5 

Helena | MT 3829 0.32 18.9 44.8 45.9 

Reno | NV 4403 0.32 18.9 15.7 44.6 

Gunnison | CO 7674 0.32 18.9 39.5 51.3 

 

The building models used in this study for simulation are provided by the U.S. Department 

of Energy for use with EnergyPlus™ simulation engine [37]. Each file is populated with building 

specific construction data. Within the files are varying heat transfer surface orientations, 

represented by x, y, and z coordinates in space. Example of building surfaces include floor, ceiling, 

interior flooring, roof surfaces, exterior walls, below ground crawl wall, and building vertices 

coordinates. Wind speed and wind direction also vary by city and season. 

3.3 Materials and Methods 

A methodical process to gather data, run simulations, compare performance, and generate a 

financial forecast allowed for efficient repeatability across the climate zones of the United States. 

A goal of this research is to create a template that can easily produce results for any home in any 
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city. Table 3.3 displays the steps that collectively make up the method of this chapter. The major 

steps listed may be comprised of several intermediate tasks not shown.  

Table 3.3 Sequential Summary of Analysis Method 

STEP METHOD  

1 Gather data from prototype homes based on weather profiles   

2 Generate baseline energy use data with existing HVAC system 

3 Gather thermal and physical soil properties from 12 locations 

4 Design customized borehole depth based upon soil properties and ground loads 

5 Modify EnergyPlus™ residence files to replace existing system with GHP system 

6 Run simulations with new GHP system  

7 Compile energy use data with new GHP system to compare to existing system 

8 Determine monthly savings with local utility cost [$/kWh] 

9 Apply local incentives to each location to arrive at payback period and system savings  

10 Provide metric to evaluate expected consumer acceptance of payback results 

11 Determine steps for further knowledge precision  

 

3.3.1. Geothermal System Analysis 

3.3.1.1 Ground Heat Exchanger Design 

A single, vertical bore was the GHE type in this geothermal analysis. Other types include 

horizontal or slinky-style borefields. Both alternatives require significant land area. The vertical 

borefield is the focus in this study because the selected cities are chosen from urban and suburban 

residential areas, where lot sizes are smaller. The residential buildings selected from each climate 

zone in this study were from urban and suburban areas, rather than rural. The feasibility of a 

horizontal borefield is unlikely for these homes, due to space limitations. Therefore, vertical 

single-bore ground heat exchangers were the chosen configuration. 
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For all 12 cities in this study, a custom borehole length was calculated with the 

consideration of ground loads and soil characteristics. The ground loads were determined by 

running a simulation for each city’s prototype home and weather file with the existing electric 

cooling and natural gas heating system. The single-family model prototype homes and weather 

files were provided by the U.S. Department of Energy [37] [65]. The peak ground load is the heat 

rejection or absorption necessary during either the heating or cooling season, whichever was 

higher.  

Soil characteristics vary between the 12 locations. Thermal conductivity values for each 

location were determined through the combined use of the Web Soil Survey and ASHRAE 

Fundamentals [42]. Dominant soil type and water content was determined by defining a 

geographical Area of Interest (AOI) and running the reports on the soil data. With the two input 

values of soil type and water content, thermal conductivity was determined from ASHRAE 

Fundamentals. 

Defining an AOI as large as a city’s boundaries resulted in too many soil types, and it 

became difficult to distinguish the dominant type for a residential neighborhood. Therefore, 

Multiple Listing Services (MLS) was consulted to determine real, residential neighborhoods that 

have homes the size of the prototype home. The AOI for each city was then zoomed into a smaller 

geographical region of the city. This smaller region focused on a neighborhood or community, 

where the dominant soil type was more distinguishable. Table 3.4 below identifies the street and 

zip code in each target city around which the soil samples were investigated for predominant soil 

type, corresponding thermal conductivity, k [66], and soil specific heat capacity, cp [43] [47].   
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Table 3.4 Residential Building Locations for Soil Characteristic Analysis 

Zone City | State Street 
Zip 

Code 

Predominant 

Soil Type 

k [66] 

[W/m•K] 

cp [43] [47] 

[J/kg•K] 

1A Miami | FL NW 82nd Terrace 33150 Sand 1.586 2465 

3A Memphis | TN N Angela Road 38117 Silt loam 2.307 3308 

2B Phoenix | AZ W Camino Acequia 85051 Clay loam 1.442 1995 

3B Las Vegas | NV Capistrano Avenue 89169 Sandy loam 1.730 2418 

3C Los Angeles | CA Lancaster Avenue 90033 Clay loam 1.009 1396 

4A Baltimore | MD Kildaire Drive 21234 Sandy loam 2.163 3152 

4C Portland | OR NE 35th Avenue 97212 Silt loam 2.163 3199 

5B Reno | NV Shale Court 89503 Sandy loam 2.307 2257 

6B Helena | MT Hillsdale Street 59601 Loam 1.586 2264 

5A Des Moines | IA 24th Street 50311 Loam 1.730 2469 

7A Duluth | MN N Robin Avenue 55811 Silt loam 1.298 1920 

7B Gunnison | CO County Road 20 81230 Stony loam 2.307 3585 

Street addressed obtained from Multiple Listing Services (MLS) at http://www.mls.com/. Homes for sale of 

approximately 2400 SF in the urban or suburban areas of each city were identified and used as the subject property. 

 

Using ground heating loads, the borehole length was calculated using the method presented 

by Philippe and Bernier [35]. In addition to a custom ground heat exchanger size, the cooling and 

heating capacity of the heat pump itself is a significant contributor to the ultimate energy 

consumption savings [10]. To achieve a truly customized analysis, the recommended design 

capacity was determined through the EnergyPlus™ autosize function, then resimulated with the 

autosize specified as the actual capacity. Once determined, the program was tuned to reflect the 

performance characteristics of that specific size equipment.  

3.3.1.2 Heat Pump Input Parameters 

The heat pump performance curves were generated by compiling performance data from 5 

market-leading, reputable heat pump manufacturers by EnergyStar [67]. Curves were generated 

http://www.mls.com/
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for three heat pump capacities of 024, 036, and 048 [68][69][70][71][72]. These numerical values 

correspond to the nominal cooling load. Efficiency parameters are shown in Table 3.5. 

Table 3.5 Heat Pump Average Efficiency Values 

Model 

Number 

Cooling 

EER 

Heating 

COP 

HP024 17.4 3.84 

HP036 17.6 3.82 

HP048 16.9 3.80 

Average EER and COP values obtained by taking the mean of each value from all five 

geothermal heat pump manufacturers. They represent the current market leading manufacturers 

in energy-efficiency per https://www.energystar.gov/. 

Simulating various heat pump sizes for each residential building requires specific inputs to 

EnergyPlus™ in the form of heat pump coefficients, coefficients of performance (COP), and 

design water flow rate. Heat pump coefficients are calculated by a supplementary spreadsheet 

program provided by EnergyPlus™ [73]. The program requires detailed performance data at 

varying environment conditions that is typically provided by the heat pump manufacturer. From 

the data, the coefficient generator outputs values that then become inputs to EnergyPlus™ for use 

with the Water-To-Air Heat Pump Equation Fit object. Unique heat pump coefficients were 

calculated for each size heat pump, for both cooling and heating performance. A puzzling 

revelation was discovered in the process of developing the heat pump coefficients from the 

performance curves. Initially, one manufacturer was chosen and all coefficients were calculated 

from that particular submittal data. Energy use and savings results were generated. To verify, a 

second manufacturer’s submittal data was used to generate new coefficients. Interestingly, the 

usage and savings results were varied enough to cause pause. Ultimately, the top 5 manufacturers’ 

performance data for each capacity was compiled, resulting in one set of heat pump coefficients 
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indicative of performance data across many manufacturers. Results in this study characterize the 

collective market available, high-efficiency residential geothermal heat pumps. Heat pump 

coefficients used in this study for heating and cooling are shown in Table B.1 in Appendix B.  

Determination of the heat pump coefficients for input into the simulation was a defining 

and tedious task, but one that proved crucial to accurate results in this study. Geothermal heat 

pump coefficients were generated as inputs to EnergyPlus™ simulation software. These heat pump 

coefficients are generated by compiling heat pump performance data from 5 market leading, high 

efficiency residential geothermal heat pump manufacturers. These coefficients can be used to 

represent a general, market available heat pump in 2-ton, 3-ton, and 4-ton capacities. Baseline 

prototype home energy use by city was generated by EnergyPlus™ using the prototype home 

download file from www.energy.gov and the respective weather file for that city. This data can be 

interpreted as energy use per month by certain HVAC components. The GSHP home energy use 

by city was generated from EnergyPlus™ and the respective city weather file. The GSHP model 

was created by the authors to model the alternate closed loop, GSHP system. 

The general heat pump coefficients by capacity is valuable for future researchers studying 

geothermal heat pump performance, particularly for residential applications. They are performance 

curves for an overall market-available geothermal heat pump, not tied to a specific manufacturer. 

This data was not already available and published when this study was performed, so the 

availability of this information fills a gap in present data. The energy use data is useful to 

researchers seeking to quantify usage and financial savings for alternative energy HVAC systems. 

The original, or baseline, system is a DX cooling / natural gas heating traditional system. The 

replacement system is a ground source heat pump that has been sized accounting for soil 

characteristics local to specific regions of the United States. 
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The geothermal system required several inputs including the heat pump cooling and 

heating coil coefficients, ground heat exchanger parameters, soil conductivity and specific heat 

capacity, and borefield type. For the heat pump coefficient data, an extensive amount of data entry 

was required from the engineering specifications published by various heat pump manufacturers 

Further insights and development of experiments are limitless with the data presented. The 

heat pump performance coefficients apply for any analysis of a residential geothermal heat pump 

that is simulated with EnergyPlus™. The data can be used as direct inputs into the Water-To-Air 

Heat Pump cooling coil and heating coil objects. The home energy use data is useful for further 

insights to compare or contrast with other cities across the country or the globe. This comparison 

is possible with the baseline prototype home data or the geothermal heat pump system data. 

Once all construction, weather, geographical, and heat pump characteristics were input to 

EnergyPlus™, the simulation engine was executed. The total energy use for each scenario was 

compared to the energy use for the baseline electric cooling/gas heating system. Contributions to 

the total consumption by each system component was investigated to accurately identify where the 

increases and decreases occur, before and after system replacement. 

3.3.2 Geothermal Heat Pump System Description 

The geothermal heat pump system is represented by the schematic in Figure 3.7, originally 

published by Neves et al. [56]. The load side is a represented as a single zone living area, and the 

source side is the GHE. These two components, source side (ground) and load side (zone), intersect 

at the heat pump. Refrigerant and heat are transferred in one direction during the cooling season, 

then reverses in the heating season. This reversal is what distinguishes a heat pump from a 

traditional electric air conditioner, as the direction of heat flow simply changes depending on 

whether heat is absorbed from or rejected to the ground. 
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3.3.2.1 Heating Mode 

In the cold season, the GHP operates in heating mode. In both modes, the heat transfer 

medium from the ground to the heat pump is water. In heating mode, heat is absorbed from the 

ground by the water and the heat is delivered to the heat pump. Inside the heat pump, the warm 

water exchanges the heat to the refrigerant in the refrigerant coil. This exchange marks the location 

that the source side intersects the demand side. In the heating mode, the water is acting as the 

evaporator for the refrigerant as it delivers it heat. The hot refrigerant is then superheated by the 

compressor. Superheated refrigerant runs through the air handling unit (AHU) where a fan blows 

mixed air needing heat over the hot refrigerant coil. The mixed air is a combination of return air 

(RA) from the zone and outside air (OA). The AHU maintains proper volume of return RA and 

OA to achieve human comfort and meet ventilation requirements. A supplemental heating coil 

may contribute to the air prior to delivery to the zone. The call for supplement heat depends on the 

outside air temperature and the desired temperature of the air leaving the heating coil. The desired 

outcome is warm air delivered to the zone as it has received heat from the refrigerant and 

supplemental heater, if necessary. Cooler refrigerant exits the zone and is chilled further by the 

pressure drop across the expansion valve. The refrigerant then transfers to the water/refrigerant 

heat exchanger to begin absorbing heat from the ground water. The cycle begins again. Cold 

seasons vary in calendar months and duration between the selected cities.   

3.3.2.2 Cooling Mode 

In the warm season, the GHP operates in cooling mode. In cooling mode, heat is rejected 

to the ground by the water and the cooler water returns to the heat pump. Inside the heat pump, the 

cool water absorbs heat from the refrigerant in the refrigerant coil. In the cooling mode, the water 

is acting as the condenser for the refrigerant absorbs the refrigerant’s heat. The cooler refrigerant 
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is then chilled further by the pressure drop across the expansion valve. Chilled refrigerant runs 

through the AHU where a fan blows warmer mixed air over the cool refrigerant coil. The desired 

outcome is cold air delivered to the zone as it has rejected heat to the refrigerant. The now hot 

refrigerant is then superheated by the compressor. The refrigerant then enters the water/refrigerant 

heat exchanger to begin rejecting heat to the ground water. The cycle begins again. Warm seasons 

vary in calendar months and duration between the selected cities.   

 

Figure 3.7 Geothermal Heat Pump System Schematic [39] 
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3.3.3 Building Model Analysis 

3.3.3.1 Baseline Energy Use Determination 

Determining the baseline energy use for each of the 12 selected cities was the imperative 

first step to analyzing savings by a geothermal system replacement. Each residential building was 

simulated with its respective geographical location, weather data, and existing electric cooling and 

gas heating system. Figure 3.8 shows the baseline meter readings by month and city. Represented 

in bold lines are the two extremes, the lowest and the highest annual energy use. Duluth, MN had 

the highest energy use at 40,383 kWh total and Los Angeles, CA had the lowest at 17,855 kWh 

total. Much relevant information is extracted from this data. The climate regions with cold winters 

have a significant spike in energy use over the warmer climates during the heating season. This 

jump is due to reliance on natural gas to fuel the furnace heating system. In the cooling season, an 

elevated energy use is observed in locations within hot climates, such as Phoenix, AZ. 
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Figure 3.8 Baseline Energy Use Meter Readings by Month and Location 
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To get a distinct comparison between the energy use in the heating season versus the 

cooling season, Figure 3.8 was broken down into energy use by electricity and energy use by 

natural gas in Figure 3.9 and Figure 3.10, respectively. These metrics were graphed on the same 

axis range to accurately compare to one another. By comparing Figure 3.9 and Figure 3.10 side by 

side, it is apparent that more energy use is common during the heating season. While variation is 

still present between the highest and lowest readings in the warm months, the differential is 

astounding in the cold months. Even the milder climate zones exhibit electricity use equal to or 

higher than hotter climate zones. These differences can be attributed to a common need for air 

conditioning in the summer, differences in cooling equipment efficiency, and humidity. 
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Figure 3.9 Baseline Energy Use from Electricity Only 
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Figure 3.10 Baseline Energy Use from Natural Gas Use Only 
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Each EnergyPlus™ file was modified to replace the baseline system with the geothermal 

system. The critical inputs to EnergyPlus™ were the heat pump coefficients, coefficient of 

performance (COP), borehole length, water flow rate through the heat exchanger, undisturbed 

ground temperature, and soil thermal conductivity. Other inputs such as grout thermal 

conductivity, U-tube distance, and pipe thermal conductivity were compiled through previous 

studies on borefield design optimization [12]. Predominant soil type and water content leads to the 

determination of thermal conductivity, a key variable for geothermal system design. 
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3.3.3.2 Area of Interest Determination 

All regions shown with the AOI defined were determined with caution and consideration 

for the climate zone characteristics, as well as available information on soil type, ground heat 

exchanger design, and availability of prototype home files by EnergyPlus™. 

Figure 3.11 illustrates an example of the procedure used to determine the AOI for each of 

the 12 cities of interest. The interactive Web Soil Survey, provided by the U.S. Department of 

Agriculture National Resources Conservation service, allows input of a specific address to zoom 

to and define the AOI [42]. For Miami, FL and the other 11 cities, this method allowed for very 

geographically specific soil areas defined by the residential homes in Table 3.4. The AOI maps of 

the remaining cities are given in the Appendix, Figure A.3 through Figure A.13. 

 

Figure 3.11 Map of Miami, FL Area of Interest 

Actual address is Street, Zip Code: NW 82nd Terrace, 33150 
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The AOI procedure for each location allowed for specific identification of the predominant 

soil type, water content, and thermal conductivity of the ground beneath the exact address. Table 

3.6 summarizes the peak hourly ground load, date of peak, and cooling and heating quadrants each 

location that will affect the system design capacity and subsequent performance of the geothermal 

system. 

Table 3.6 Ground Loads and Quadrant Classification 

Zone City | State 
Peak Hourly 

Ground Load [W] 
Date of Peak 

Cooling 

Quadrant 

Heating 

Quadrant 

1A Miami | FL 8066 W July 22 Warm / Moist Warm / Moist 

3A Memphis | TN 6970 W August 21 Neutral / Moist Warm / Moist 

2B Phoenix | AZ 9398 W August 10 Warm / Dry Warm / Dry 

3B Las Vegas | NV 7392 W July 5 Warm / Dry Warm / Dry 

3C Los Angeles | CA 4546 W September 7 Cool / Moist Warm / Moist 

4A Baltimore | MD 7242 W July 9 Cool / Moist Warm / Moist 

4C Portland | OR 6395 W July 21 Cool / Moist Warm / Moist 

5A Des Moines | IA 9581 W January 23 Cool / Moist Cold / Moist 

5B Reno | NV 6732 W July 5 Cool / Dry Warm / Dry 

6B Helena | MT 8218 W February 24 Cool / Moist Cold / Moist 

7A Duluth | MN 9797 W January 9 Cool / Moist Cold / Moist 

7B Gunnison | CO 8190 W December 15 Cool / Dry Cold / Dry 

 

To clarify the quadrant nomenclature, the cooling and heating quadrants noted in Table 3.6 

are rankings relative to one another based on the classification grids in Figure 3.5 and Figure 3.6. 

For example, Memphis, TN is in the warm / dry heating quadrant. This label does not mean that 

Memphis has warm winters never inducing a heating load, but rather that the number of HDD is 

in the lower half of the range of all 12 cities compared. Similarly, Reno, NV is in the cool / dry 

cooling quadrant. This label does not mean Reno has cool summers never inducing a cooling load, 
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but rather that the number of CDD is in the lower half of the range of all 12 cities. To the contrary, 

Memphis experiences some very cold winter days, and Reno logs very warm summer days in the 

weather records. An interesting observation is the date of the highest ground load. Ground load 

represents the maximum heat either rejected to the ground to achieve cooling setpoint or the heat 

absorbed from the ground to achieve heating setpoint. Climate zones 1 through 4 and 5B have a 

peak ground load in the cooling months of July through September. However, climate zones 5A, 

6 and 7 have a peak ground load in the heating season, indicating a higher peak heating demand 

annually than cooling demand. 

3.3.4 Incentive and Payback Analysis 

3.3.4.1 Incentive Analysis 

A major focus of this investigation is the consideration of all federal and local financial 

incentives available to residential building owners in each climate zone. While all states quality 

for the federal Residential Renewable Energy Tax Credit, many other local incentives are available 

to mitigate the high initial capital investment cost of installing a GHP system. Table 3.7 itemizes 

the additional local incentives present in each of the 12 selected cities, compiled through the Clean 

Energy Technology Center Database of State Incentives for Renewables & Efficiency (DSIRE) 

[28].  
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Table 3.7 Incentives by Location 

 Program Incentive 

Federal (All) Residential Renewable Energy Tax Credit 
Tax credit equal to 30% of 

investment 

Los Angeles, CA N/A   

Miami, FL 
Property Tax Abatement for Renewable 

Energy Property 

Florida provides a 100% property tax 

exemption (1.12%) for residential 

renewable energy property 

Las Vegas, NV N/A   

Portland, OR 

Renewable Energy Systems Exemption 
100% Property Tax Incentive 

(1.125%) 

Portland General Electric - Residential 

Energy Efficiency Rebate Program 

Heat Pump Instant Discount: $200; 

Efficient Heat Pumps: $700 

Memphis, TN TVA Partner Utilities - eScore Program Geothermal Heat Pump: $250/Unit 

Phoenix, AZ 
Energy Equipment Property Tax 

Exemption 
100% of increased value (0.802%) 

Gunnison, CO 
Gunnison County Electric - Residential 

Energy Efficiency Rebate Program 

Geothermal Heat Pump: $500/ton 

plus $150/unit 

Reno, NV N/A   

Baltimore, MD 

Residential Clean Energy Grant Program New GHC: $3,000/project 

Baltimore Gas & Electric Company (Gas) 

- Residential Energy Efficiency Rebate 

Program 

Geothermal Heat Pump: $1,500 

Des Moines, IA Geothermal Heat Pump Tax Credit 
20% of the Federal Tax Credit, 

equivalent to 6% of the system cost 

Helena, MT 

Residential Alternative Energy System 

Tax Credit 

$500 per individual taxpayer; up to 

$1,000 per household. 

Residential Geothermal Systems Credit $1,500 

Renewable Energy Systems Exemption 100% for 10 years (0.957%) 

Duluth, MN 
Minnesota Power - Residential Energy 

Efficiency Rebate Program 

Ground Source Heat Pump: $100-

$200 per ton plus $200 for ECM 

motor 

 

Some of the incentives are county-specific, so they may not be applicable to all cities in 

the climate zone represented by the selected city. For cities that have a property tax exemption 

incentive, the property tax rate is stated in the respective row in Table 3.7 [74]. 
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3.3.4.2 Payback Analysis 

Two methods of calculating payback period were executed in this study, with the purpose 

of demonstrating the variability in the data depending on the method. The discounted payback 

period (DPP) accounts for the expected inflation rate over the lifetime of the system, as well as 

discount rate. The actual payback period (APP) uses average annual utility cost increases to modify 

annual savings [75]. While several other methods exist, the DPP and APP methods are valid and 

effectively demonstrate the method-dependent payback sensitivity. 

3.3.4.2.1 Discounted Payback Period 

Payback period analysis was first performed using the DPP method. The combination of 

optimal system size, annual monetary savings, and available incentives were considered to 

calculate the payback period for each climate-specific prototype home. This method accounts for 

discount rate and inflation. To translate energy savings into monetary savings, the price of 

electricity for each location is shown in Table 3.8.  
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Table 3.8 Electricity Prices by State current October 2019 [76] 

Zone City | State Utility Cost [$/kWh] 

1A Miami | FL 0.1161 

2B Phoenix | AZ 0.1284 

3A Memphis | TN 0.1067 

3B Las Vegas | NV 0.1186 

3C Los Angeles | CA 0.1890 

4A Baltimore | MD 0.1333 

4C Portland | OR 0.1092 

5A Des Moines | IA 0.1267 

5B Reno | NV 0.1186 

6B Helena | MT 0.1118 

7A Duluth | MN 0.1338 

7B Gunnison | CO 0.1214 

Electricity Local, “Local Electricity Rates and Statistics,” Electricity Rates & Usage, 2019. [Online]. Available: 

https://www.electricitylocal.com/. [Accessed: 25-Feb-2020]. 

Using the annual savings value, Equation 3.1 calculates Costn, the dollar amount left on an 

investment after year n.  This value is dependent upon the discount rate, j, and the inflation rate, i. 

With the variables, the remaining deficit at the end of each year is determined.: 

 

 

𝐶𝑜𝑠𝑡𝑛 =
𝐴𝑆

[(1 + 𝑗) (1 + 𝑖)⁄ ]𝑛
 

(3.1) 

The value used in this study for inflation rate is i = 2.44% and the current discount rate is 

j = 3.0%, based on the Federal Energy Management Program’s (FEMP) most recent publication 

[51]. While j = 3.0% is used in this study, the Office of Management and Budget (OMB) Circular 

A-94 advises payback analyses be performed using the current discount rate as well as the 

historical average discount rate of j = 7.0% [52] [53].  The discount rate is a factor of notable 

sensitivity to the payback period, as shown in Neves et al. [56], in which both discount rates were 
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used and results compared. It should be noted that the discount rate used in a financial analysis of 

this type will influence the outcome and is a good candidate for sensitivity analysis. Table 3.9 is a 

summary of parameters for the financial investigation. 

Table 3.9 Definition of Variables Used in Climate Zone Payback Analysis 

Variable Parameter Units 

Costcb Initial Cost Before Incentives [$] 

CapHP Heat Pump Cooling Capacity [tons] 

ini Incentive i Savings [$] 

Costca Initial Cost After Incentives [$] 

AS Annual Savings [$] 

Coste Electricity Cost [$/kWh] 

j Discount Rate [%] 

i Inflation Rate [%] 

n Year Post-Investment [year] 

Costn Investment Deficit Remaining after Year n [$] 

DPP Discounted Payback Period [years] 

APP Actual Payback Period [years] 

Lifetime Net Total System Lifetime Savings [$] 

 

Initial cost before incentives, Costcb will vary for each climate zone based upon the heat 

pump size that achieves the maximum energy savings from simulation results [74]. The installation 

cost per ton of cooling used in this study is $4,000 [1]. Therefore, Costcb is calculated using 

Equation 3.2: 

 

𝐶𝑜𝑠𝑡𝑐𝑏 = ($4,000)𝐶𝑎𝑝𝐻𝑃 
(3.2) 

The initial cost after incentives is shown in Equation 3.3: 
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𝐶𝑜𝑠𝑡𝑐𝑎 = 𝐶𝑜𝑠𝑡𝑐𝑏 − ∑ 𝑖𝑛𝑖

𝑛

𝑖=1

 
(3.3) 

 

In addition to payback period, or the duration necessary to make up the initial capital 

investment based on annual energy savings, a total system lifetime net value can be determined. 

For the geothermal heat pump system, a system lifetime is 25 years. 

 

 

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑁𝑒𝑡𝐷𝑃𝑃 =  −𝐶𝑜𝑠𝑡𝑐𝑎 + (25𝑦𝑒𝑎𝑟𝑠)𝐴𝑆 
(3.4) 

3.3.4.2.2 Actual Payback Method 

Actual payback method data accounts for the consistently rising cost of energy in the 

residential sector. Choosing the rate of energy cost increase is a critical component to the results. 

The APP method was described by Hanna [75] in the Journal of Consumer Affairs several decades 

ago. The annual cost increase at that time was 8%, a value seeming quite radical for the current 

economy. More recent data was reported in a 2016 update by Sandoval [77]. The publication 

follows the residential cost of energy per kWh over a 14-year time period between 2001 and 2014. 

This cost increase is 67% in 14 years. Averaging across the time period results in 5.15% energy 

cost increase per kWh per year. This is the value used in this report for calculating the APP. The 

APP method is quite simple. The initial annual savings in year n = 1 is increased by 5.15% each 

year. That new annual savings is subtracted from the remaining balance left on the capital 

investment. For example, if annual savings for an energy efficiency project is $100 in year n = 1, 

the following year the annual savings will be increased as in Equation 3.5: 
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𝐴𝑆𝑛 = 1.0515(𝐴𝑆𝑛−1) 
(3.5) 

 

where n = 2 through n = 25, the year the system is expected to reach the end of its useful 

life. From the iterated annual savings values, the APP and system lifetime savings can be 

determined. Using the APP method, Equation 3.4 is modified to Equation 3.6 below: 

 

 

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑁𝑒𝑡𝐴𝑃𝑃 =  −𝐶𝑜𝑠𝑡𝑐𝑎 + ∑ 𝐴𝑆𝑛

𝑛=25

𝑛=1

 (3.6) 

Two metrics of payback period and system lifetime net savings will provide excellent data 

points to classify certain climate zones as viable or not viable for geothermal space heating and 

cooling technology. Significant differences may result in the DPP and APP methods, but a 

consumer will be presented with all the data, sensitivities, risks, and benefits. 

3.4 Results and Discussion 

3.4.1 Energy Savings Analysis 

A summary of all cities and all heat pump capacity results are displayed in Figure 3.12. 

The savings percentage was calculated by comparing the HVAC system meter reading from the 

geothermal system to the HVAC system meter reading from the baseline home. The percentages 

reported reflect annual savings in energy consumption. The HVAC system meter reading for the 

baseline home includes cooling electricity, natural gas heating, and fans. The same system meter 

reading for the alternative system home include cooling electricity, heating electricity, fans and 

ground water circulation pump. As can been seen, climate zones 3 through 7 have satisfying 

results, and climate zones 1 and 2 experience low savings numbers needing further investigation. 
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The utility cost in each location is a critical variable in the analysis of system feasibility. Of note, 

the two climate zones that result in negative savings are the two cities that had the highest peak 

ground load in Table 3.6. In fact, Miami, FL and Phoenix, AZ were the only two cities that exceed 

a peak ground load of 8,000 W cooling. 

Figure 3.12 Savings by Climate Zone 
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The greatest savings of 59% is in Helena, MT and the lowest savings is -3% in Miami, FL. The 

diverse results are due to the weather data, heating or cooling demand magnitudes and durations, 

and borefield calculations based on local conditions. To further analyze the energy use comparison, 

Figure 3.13 breaks the total consumption into components of cooling electricity, heating 

electricity, heating gas, pumps, and fans. For all climate zone, heating electricity is zero for the 
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baseline system, and heating gas consumption is zero for the alternative geothermal system. Pump 

electricity represents the consumption of the ground loop water circulating pump. 

 

Figure 3.13 Energy Comparison by Component 
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From this itemized comparison in Figure 3.13, it is easy to see the source of the immense 

savings in the heating-dominant climates is from the elimination of natural gas heating. However, 

this energy source is replaced with heat pump electricity in the heating season, and the introduction 
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of electricity use from the ground loop water circulating pump. Electricity consumption to cool 

has an increased demand for climate zones across the United States. In climate zone 7B, which has 

the highest savings, the supplemental electric heating coil accounted for 10.5% of the total power 

consumed for heating electricity. This metric is significant and can raise caution as a system 

performance indicator. If the supplemental electric heating coil operates excessively, then the heat 

pump is not performing as desired and the geothermal energy source is ineffective at reaching air 

comfort requirements. Results in Figure 3.13 indicate that a geothermal system will yield cost 

savings only in climates that have at least a minimal heating load throughout the calendar year.  

While Figure 3.12 shows savings percentage, a different perspective of the energy 

consumption delta is essential to the financial analysis. Two climate zone representative cities may 

have identical savings percentages, but vastly different [kWh] savings. Figure 3.14 demonstrates 

this distinction. In Gunnison, CO the savings exceeds 2,500 kWh in December. In Los Angeles, 

CA the savings is approximately 200 kWh. These two results demonstrate the range in [kWh] 

savings even though both cities save nearly 50% in December. 
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Figure 3.14 Energy Consumption Magnitude Comparison 

 

Each simulation resulted in EnergyPlus™ outputs reporting monthly, daily, and hourly 

energy consumption by HVAC component. The program was called to autosize the design system 

capacity based on the regional weather data, home characteristics, and soil and borehole properties 

inputs. Figure 3.14 provides a sample of the consumption profiles generated for each city. From 

this profile, the annual energy savings was determined. Table 3.10 displays the tabular view of the 

data shown graphically in Figure 3.12. Reported are percentage savings for each location, 

EnergyPlus™ recommended design capacity, and resulting cost before incentives for system 

installation, Costcb [1].  



www.manaraa.com

 

98 

Table 3.10 Annual Savings and Capital Investment  

Zone | City, State 
Annual Energy 

Savings [%] 

Design Capacity 

[Btu/hr] 
Costcb [$] 

1A | Miami, FL (3%) 34,200 $ 12,000 

2B | Phoenix, AZ 0% 43,800 $ 12,000 

3A | Memphis, TN 35% 33,960 $ 12,000 

3B | Las Vegas, NV 20% 35,640 $ 12,000 

3C | Los Angeles, CA 8% 23,040 $ 8,000 

4A | Baltimore, MD 50% 35,160 $ 12,000 

4C | Portland, OR 55% 29,520 $ 12,000 

5A | Des Moines, IA 56% 36,360 $ 12,000 

5B | Reno, NV 53% 30,600 $ 12,000 

6B | Helena, MT 59% 28,200 $ 12,000 

7A | Duluth, MN 55% 27,720 $ 12,000 

7B | Gunnison, CO 57% 24,000 $ 8,000 

 

A note about sensitivity is prudent. Reviewing the savings results from Figure 3.12 

highlight an oddity, at first glance, between Las Vegas, NV and Phoenix, AZ. Both considered to 

be hot, desert climates in close geographic proximity to one another, why will such similar cities 

yield a 20% − (0%) = 20% difference in savings? This disparity needed additional investigation. 

The extreme summers were the focus. Figure 3.15 displays the average annual daily high and low 

temperatures in both cities from June 1 through August 31. As shown, Phoenix high and low 

temperatures are both above those of Las Vegas. While the difference may seem minimal, from 

2°F to 6°F, the cumulative difference seems to have a significant impact on the GSHP performance. 

Additionally, the ground temperatures are 69°F and 73°F in Las Vegas and Phoenix, respectively. 

The higher ground temperature in Phoenix means a lesser delta between the heat sink and the water 

exiting the heat pump to reject heat to the ground. While this delta is considered in sizing the 
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borehole length, these results are calculated from the optimal borehole length with all variables 

considered [35]. 

 

Figure 3.15 Temperature Sensitivity Analysis 
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Comfort setpoint was also a curious factor. For a low savings city, Phoenix, AZ, a sidebar 

analysis was performed on the effect of varying cooling setpoint temperature. The results in Figure 

3.12 resulted from a cooling setpoint of 75°F in the cooling months. By increasing the setpoint by 

1°F up to 78°F, the savings profile experienced notable changes. The 78°F maximum value was 

chosen per recommendations in the ENERGY STAR Guide to Energy-Efficient Heating and 

Cooling, which actually recommends 78°F be the minimum value to be increased by homeowner 

comfort [78]. Figure 3.16 shows the setpoint analysis outcome. 
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Figure 3.16 Setpoint Sensitivity Analysis 
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While Figure 3.16 is for only one city, residences in all climate zones with high cooling 

demand will experience similar fluctuations to user cooling setpoints. Clearly, cooling energy 

consumption powerfully dictates potential savings. The setpoint variable is controllable by the end 

user, while the temperature profile and ground temperatures are not. However, all three are 

noteworthy in the energy savings discussion. 

3.4.2 Payback Period Analysis  

Two metrics highly important to the homeowner are the initial capital investment and the 

payback period. Table 3.11 presents the local utility cost per kWh, and ultimate annual monetary 

savings for each climate zone [79]. The annual energy savings was calculated by the summation 
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of the monthly savings for each city. By multiplying the annual energy savings by the utility cost 

per kWh for each city, annual monetary savings is determined. 

Table 3.11 Utility Data and Savings Analysis 

Zone City | State 
Utility Cost 

[$/kWh] 

Annual 

Consumption 

Savings [kWh] 

Annual 

Monetary 

Savings [$] 

1A Miami | FL 0.1161 (277) $              (32) 

2B Phoenix | AZ 0.1284 (38) $                (5) 

3A Memphis | TN 0.1067 4,183  $                446  

3B Las Vegas | NV 0.1186 1,983  $                235  

3C Los Angeles | CA 0.1890 269  $                 51  

4A Baltimore | MD 0.1333 7,376  $                983  

4C Portland | OR 0.1092 6,178  $                675  

5A Des Moines | IA 0.1267 11,830  $             1,499  

5B Reno | NV 0.1186 7,116  $                844  

6B Helena | MT 0.1118 11,052  $             1,236 

7A Duluth | MN 0.1338 13,071  $             1,833  

7B Gunnison | CO 0.1214 10,917  $             1,325  

 

Values range from $(32) in Miami, FL to $1,833 in Duluth, MN. With this data, the 

homeowner can focus on the financial forecast resulting from replacing an existing system with 

geothermal.  

However, even significant annual monetary savings may not be enough incentive to 

implement a change in technology. A savvy customer will want to know the payback period for a 

fully informed decision. Equation 3.3 calculated the total capital investment with all incentives 

available per city, shown in Table 3.7. The total capital investment results with incentive values 

are reported in Table 3.12. Values range from the lowest in Gunnison, CO of $4,450 to $8,400 in 

Phoenix, AZ and Reno, NV. Recall, the capital investment without incentives considered was a 
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function of the heat pump size that matched the design capacity by EnergyPlus™ autosize 

calculations. 

Table 3.12 Investment and Incentive Analysis 

City | State 

Total Capital 

Investment 

Without Incentives 

Federal Tax 

Credit 

Other Local 

Incentives 

Discount 

Total Capital 

Investment 

With Incentives 

Miami | FL $12,000.00 $3,600.00 $134.40 $8,265.60 

Phoenix | AZ $12,000.00 $4,800.00 $96.24 $8,303.76 

Memphis | TN $12,000.00 $3,600.00 $250.00 $8,150.00 

Las Vegas | NV $12,000.00 $3,600.00 $0.00 $8,400.00 

Los Angeles | CA $8,000.00 $2,400.00 $0.00 $5,600.00 

Baltimore | MD $12,000.00 $3,600.00 $1,500.00 $6,900.00 

Portland | OR $12,000.00 $3,600.00 $900.00 $7,500.00 

Reno | NV $12,000.00 $3,600.00 $0.00 $8,400.00 

Des Moines | IA $12,000.00 $3,600.00 $720.00 $7,680.00 

Helena | MT $12,000.00 $3,600.00 $3,648.40 $4,751.60 

Duluth | MN $12,000.00 $3,600.00 $800.00 $7,600.00 

Gunnison | CO $8,000.00 $2,400.00 $1,150.00 $4,450.00 

 

Discounted payback period, actual payback period, and system lifetime savings using each 

method are calculated for each climate zone using Equations 3.1 through 3.6. System savings 

lifetime is the reported net savings at the end of the system’s useful life, assumed at 25 years. Both 

values are shown in Figure 3.17. 
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Figure 3.17 Viable Payback Cities (A) and High Payback Cities (B) 

 

The climate zones represented in Figure 3.17 required plotting on two separate scales due 

to the great variance of the results. Figure 3.17A shows the payback period of 8 of the 12 cities. 

Figure 3.17B shows the results from the remaining 2 cities with positive savings results but 

payback as high as 38 years. The data was obscured by placing these extremes on the same graph. 

As can be seen, Figure 3.17B only displays results for the APP, not the DPP, because the payback 

period was so high in these locations that it exceeded the system lifetime and distorted the scale 

unnecessarily. 

The cities that had no local incentives to augment the federal incentive are Los Angeles, 

CA and Las Vegas and Reno, NV. Interestingly, Los Angeles and Las Vegas have the two highest 

payback periods at 37.8 years (APP) and 22.3 years (APP), respectively. This observation 
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highlights the influence of local incentives on payback period of certain climate regions. However, 

the absence of state incentives did not cause Reno, NV to have an unacceptable payback due likely 

due to a larger heating load. The shortest payback period is 3.2 years (APP) in Helena, MT. The 

system lifetime savings value is an influential metric. In climate zone 7A, the representative city 

of Duluth, MN anticipates a net monetary savings of over $81,000. Whether the data is compelling 

enough homeowners to embark on this technology change is now a consumer choice. 

3.5 Chapter Summary and Conclusion 

The goal of this study is to identify climate zones within the continental United States that 

are viable candidates for geothermal space heating and cooling technology, considering energy 

savings and payback period. Energy savings ranged from 59% annually in Helena, MT to -3% in 

Miami, FL. By analyzing trends in Figure 3.12, most cities and climate zones experienced 

significant energy consumption savings. Payoff periods range from 3.2 years in Duluth, MN up to 

37.8 years in Los Angeles, CA. Once the knowledge is available, labeling good climate zone 

candidates for geothermal space heating and cooling is possible. However, classifying viable 

versus nonviable is a subjective matter, because the acceptable payback period will vary amongst 

the owners of residential buildings. To have quantitative criteria, this study used the results of the 

consumer survey in Karytsas [15] as categories. Uniting the information in the survey and the 

payback period data determined for the 12 climate zones in the United States, the results are 

concluded in Table 3.13.  
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Table 3.13 Percentage of Residents Willing to Accept Payback Period 

Climate Zone 
Representative 

City 

Payback 

Period [years] 
Viable Nonviable 

1A Miami, FL N/A N/A N/A 

2B Phoenix, AZ N/A N/A N/A 

3A Memphis, TN 13.2 7.4% 92.6% 

3B Las Vegas, NV 22.3 5.0% 95.0% 

3C Los Angeles, CA 37.8 5.0% 95.0% 

4A Baltimore, MD 6.1 32.5% 67.5% 

4C Portland, OR 11.3 19.1% 80.9% 

5A Des Moines, IA 4.7 100% 0% 

5B Reno, NV 8.2 19.1% 80.9% 

6B Helena, MT 3.6 100% 0% 

7A Duluth, MN 3.9 100% 0% 

7B Gunnison, CO 3.2 100% 0% 

 

Using this classification scheme, between 5.0% and 100% of homeowners are willing to 

accept the payback period, depending on the climate zone. Let it be noted that the actual payback 

period (APP) was the data set used to make the classification. For climate zones 1A through 5B, 

the high percentages in the nonviable column do not show promise for widespread replacement of 

traditional HVAC system with GSHP systems. The substantial initial cost seems the major barrier, 

now made quantifiable with data in this study. Lack of knowledge, fear of the unknown, and 

resistance to change are a sampling of the qualitative barriers to increased adoption.  

In reference to initial cost, an interesting discovery emerges from the data results. Montana 

and Colorado have implemented robust local incentive programs, as seen in Table 3.7. In contrast, 

Nevada has no additional incentives above the federal tax credit. Without coincidence, it is the two 

climate zones in Montana and Colorado that prove two of the three shortest payback periods. 

Therefore, in addition to the utility cost per city, heat pump size, or soil characteristics, a 
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noteworthy factor is the presence or absence of local incentive programs. These additional 

financial offers further minimize initial capital investment through rebates and credits, as well as 

annual savings through property tax deductions. 

From the data presented, certain steps may be taken to achieve even more accurate climate 

zone payback data, and to gather public interest. Knowledge is the critical tool to educated 

decisions. The climate zone specific knowledge presented aims to educate the residential sector on 

accurate expectations for implementation of geothermal heat pump technology. 
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CHAPTER IV 

PHOTOVOLTAIC (PV) COMPLEMENTARY SYSTEM AND THE ROAD TO NET ZERO 

ENERGY BUILDINGS 

Homeowners across the globe are continually seeking methods of improving energy 

efficiency for financial benefit and personal satisfaction. From small contributions such as 

swapping light bulbs to large capital investment initiatives like upgraded heating and cooling 

systems, homeowner decisions require accurate data and confidence in potential outcomes. This 

study models the path to net-zero energy for two separate HVAC + PV systems in residential 

buildings across 12 Unites States climate zones, and determines the optimal combination for each 

climate zone. An existing, traditional air-conditioning system with natural gas furnace is paired 

with a PV array. The net-zero results are compared to the same residence upgraded to a climate-

customized geothermal heat pump HVAC system paired with a PV array. Results confidently favor 

the geothermal HVAC system + PV for climates with a significant heating demand in winter, and 

the baseline + PV system proves financially preferred for cooling-dominant climates. This research 

delivers climate-specific recommendations for the preferred net-zero HVAC + PV system through 

analysis of accurate energy performance and financial forecasting. Recommendations provide 

homeowners with valuable expectations on two HVAC + PV options along the path to a net-zero 

energy home.   
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4.1 Net Zero Energy (NZE) Introduction 

Renewable energy technologies exhibit varying performance success across U.S. climates. 

Geothermal technology may be preferred in one location and less effective in another. The 

variability can be due to climate conditions, soil characteristics, and home construction features. 

In geothermal viable climates, installation of a geothermal heat pump (GHP) for space heating and 

cooling can be an effective energy efficiency improvement, saving significant and energy and 

dollars annually. This study compares homes with a baseline HVAC system with the same home 

retrofit with a GHP HVAC system. Each is paired with a solar photovoltaic (PV) array for on-site 

energy generation. The baseline system consists of a traditional, direct expansion (DX) cooling 

system and natural gas furnace heating system. The GHP system is a climate-customized ground 

source heat pump and geothermal borefield.  

Prior literature has compared different HVAC + PV systems to compare alternatives for 

energy use. Wu and Skye [80] analyzed energy use by an air-source heat pump (ASHP) + PV array 

to that of geothermal heat pump (GHP) + PV array. Results revealed that the optimal HVAC + PV 

combination consists of the GHP in climates with a moderate to high heating demand. However, 

the GHP system often used more energy than the ASHP in warm climates. This study builds on 

the CHAPTER III investigation that focused on energy and financial outcomes of a GHP HVAC 

system across 12 climate zones in the United States. Adding to the previous study, the path to net-

zero energy is investigated by adding the PV array and comparing performance to the baseline 

system + PV combination.    

Defining the term net zero energy (NZE) is an imperative first step to developing a design 

intent and strategy for residential dwellings. A catchy phrase in recent years to all building owners, 

the NZE concept may be misunderstood unless clear parameters are set forth for particular projects. 
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Torcellini et al. [81] presented a concise set of definition and design intentions for various 

buildings and site situations at the American Society for an Energy-Efficient Economy Summer 

Study. Breaking the term down into components, “net zero” commonly means the incoming plus 

outgoing equals zero. In the context of energy, the incoming energy is the energy required by the 

building for daily functioning, and the outgoing energy is the energy generated by renewable 

sources. “Energy” in NZE means the required capacity from all sources, including all fuels and 

electricity, such that a residential building owner can comfortably heat and cool, operate all 

appliances, cooking ranges, lighting, and enjoy consistent domestic hot water heating. Within this 

context, the definition of NZE can be more clearly delineated for a residential building. Torcellini 

et al. [81] defines four variations of NZE: (1) Net Zero Site Energy Building, (2) Net Zero Source 

Energy Building, (3) Net Zero Energy Cost Building, and (4) Net Zero Energy Emissions Building. 

The four variations differ in the interpretations of energy consumption, location of energy 

generation, economics attached to consumption, and pollutants attributed to processing. For this 

study, the first definition for a net zero site energy building (NZSEB) is applied to residential 

homes across the United States climate zones. Two scenarios are compared for NZE potential. The 

first is a PV system alone, where the baseline home consisting of a traditional DX cooling and gas 

furnace HVAC system is augmented with a PV array. The second is a GHP + PV combination 

system, adding the PV array to the home already retrofit with the climate-customized geothermal 

heat pump HVAC system in CHAPTER III.  

4.2 Materials and Methods 

4.2.1 Assumptions 

Building upon the definition of NZSEB requires stated assumptions for this application. 

As [81] profoundly reminded designers, the initial goal of all NZE projects is to achieve energy 
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efficiency. It would not make sense to invest large sums of money to generate energy equal to 

consumption if the building is full of outdated, inefficient equipment, appliances, lighting, 

construction, and beyond. This effort would proverbially be throwing money out the single-pane 

window. With this initial goal in mind, the following assumptions are in effect for the NZE 

investigation in this study: 

1) Renewable energy source is photovoltaic (PV) array that resides on-site and 

supplies energy to the residential building only. 

2) NZE analysis includes energy required for the entire facility electricity and gas 

demand. However, it should be noted that the only energy-efficiency upgrades have 

been performed on the HVAC system are those described in CHAPTER III by 

installation of a GHP system.  

3) PV capacity is sized to either achieve NZE for the building or 12 kW, whichever is 

lower. The 12 kW value is the maximum array capacity for the BEopt™ simulation 

engine used in this study. 

4) NZE measure is for consumption and generation, not cost. The historical and 

predicted variability of energy prices makes a zero-cost building challenging to 

guarantee. PV capacity (array size) is sized to offset energy use only. 

5) Results reflect net metering analysis, wherein consumption is reduced by the 

generation, and excess energy may be sold back to the grid. Each location varies in 

net metering rates and compensation. 

4.2.2 Existing Data 

A previous study analyzing residential, climate-customized geothermal heat pump space 

heating and cooling performance [82] was the inspiration for this follow-on investigation. The 
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presented data reported the energy performance and financial forecast for the GHP system in 12 

diverse climate zones across the United States. Energy use with the GHP system was compared to 

the energy use with a baseline home consisting of DX electric cooling and natural gas furnace 

heating. Annual energy performance data from the baseline home and the GHP-retrofit home are 

used in this study for the facility energy demand. Moving forward to the NZE analysis commences 

where the GHP retrofit concluded. 

4.2.3 Modeling and Simulation 

Energy consumption data for the baseline HVAC home was tabulated through 

EnergyPlus™, the Department of Energy whole building simulation engine. Energy consumption 

data for the GHP HVAC system home was carried in from CHAPTER III. Table 4.1 outlines the 

method used to add a PV array to homes in the 12 climate zones. 

Table 4.1 Procedure for Net-Zero System Investigation 

Step Activity 

1 Retrieve facility energy consumption for homes with GHP system in each climate zone 

2 Input home characteristics, weather file, PV azimuth and tilt into BEopt™ 

3 Run optimization simulation for 0.5kW to 12kW PV arrays 

4 Choose PV array size that generates the energy equal to the annual consumption from Step 1 

5 Record cost [$/W] of chosen PV array size, as provided by BEopt™ 

6 Determine local incentives for geothermal plus solar photovoltaics 

7 Calculate capital investment for combined system after incentives are applied 

8 Calculate payback period and system lifetime savings for combined system 

9 Compare combined system to geothermal system for best choice per climate zone 

 

For the baseline + PV system, the annual energy consumption includes HVAC plus all 

other facility components requiring energy. These values were determined by simulating the 
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baseline home and summing all facility electricity and gas demand. For the GHP + PV combination 

system, the energy-efficiency upgrades achieved by replacing a residential building’s space 

heating and cooling system with a geothermal heat pump system yielded the annual consumption 

for each location used in this analysis. The target value for photovoltaic electricity generation is 

the facility consumption value or the generation from a 12 kW array, whichever is lower.  

Simulation of NZE analysis was executed through Building Energy Optimization Tool 

software (BEopt™). BEopt™ was designed by National Renewable Energy Laboratory in support 

of the U.S. Department of Energy [83]. The program provides a user-friendly graphical user 

interface to input home characteristics such as footprint, neighbor configuration, construction, 

systems, and appliances, among others. The same weather files are used as inputs to BEopt™ and 

EnergyPlus™. Once a simulation is activated, BEopt™ uses EnergyPlus™ as its background 

whole building simulation tool. In this study, the optimization feature within BEopt™ generated 

output for electricity generation by array capacity [kW] based upon azimuth and tilt angle. Array 

capacity can be varied from 0.5 kW to 12 kW, in 0.5 kW increments. The graphical user interface 

for a prototype home is shown in Figure 4.1. Each of the 12 cities used the same square footage, 

orientation, and neighboring home characteristics.  
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Figure 4.1 BEopt™ Graphical User Interface 

 

Azimuth was held constant at 180°, or south facing, due to their locations in the Northern 

Hemisphere. The tilt angle was customized by latitude, longitude, and a weather factor using the 

procedure published by Christensen and Barker [84]. Optimization results reported the annual 

generation of each PV array. The array size chosen for each location was the one that generated 

electricity just exceeding the annual HVAC consumption. Each array was reported with an 

associated system cost per unit of energy of array size [$/W]. This dollar amount was used as the 

capital cost before incentives, Costcb,PV, for the PV complementary component. Once valued, a 

total system cost was determined for the combination system through Equation 4.1: 

 

𝐶𝑜𝑠𝑡𝑐𝑏,𝑃𝑉 + 𝐶𝑜𝑠𝑡𝑐𝑏,𝐺𝐻𝑃 = 𝐶𝑜𝑠𝑡𝑐𝑏,𝑡𝑜𝑡𝑎𝑙 (4.1) 
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Once capital cost before incentives was summed from Equation 4.1, additional local 

incentives for solar photovoltaics were added to Table 3.7, resulting in Table 4.2.  

Table 4.2 Financial Incentives by Technology and State [85] 

 Zone City, State Technology  Incentive Details 

1A Miami, FL 

Geothermal 
Property Tax Abatement for 

Renewable Energy Property 
100% of added value 

Solar 
Property Tax Abatement for 

Renewable Energy Property 
100% of added value 

2B Phoenix, AZ 

Geothermal 
Energy Equipment Property 

Tax Exemption 
100% of increased value 

Solar 

Residential Solar and Wind 

Energy Systems Tax Credit 
25%, $1000 max 

Energy Equipment Property 

Tax Exemption 
100% of increased value 

3A Memphis, TN 

Geothermal 
TVA Partner Utilities - 

eScore Program 

Geothermal Heat Pump: 

$250/Unit 

Solar 
Green Energy Property Tax 

Assessment 

Property Tax Assessment, 

not to exceed 12.5% of 

installed cost 

3B Las Vegas, NV 
Geothermal N/A N/A 

Solar N/A N/A 

3C Los Angeles, CA 

Geothermal N/A N/A 

Solar 

Property Tax Exclusion for 

Solar Energy Systems 
100% of system value 

Solar Investment Tax Credit $0.25/Watt of array size 

4A Baltimore, MD 

Geothermal 
Residential Clean Energy 

Rebate Program 
New GHC: $3,000/project 

Solar 

Residential Clean Energy 

Rebate Program 

PV: $1,000/project (flat 

per installation/household 

incentive) 

Property Tax Exemption for 

Solar and Wind Energy 

Systems 

100% real property tax 

exemption for solar and 

wind energy property 

4C Portland, OR 

Geothermal 
Renewable Energy Systems 

Exemption 
100% 

Solar 
Renewable Energy Systems 

Exemption 
100% 
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Table 4.2 (continued) 

5A Des Moines, IA 

Geothermal 

Property Tax Exemption for 

Renewable Energy Systems 

Geothermal: 100% 

exemption for 10 years 

Geothermal Heat Pump Tax 

Credit 

20% of the Federal Tax 

Credit, equivalent to 6% 

of the system cost 

Solar 

Solar Energy Systems Tax 

Credit (Personal) 
15% 

Property Tax Exemption for 

Renewable Energy Systems 

Solar and wind: 100% 

exemption for 5 years 

5B Reno, NV 
Geothermal N/A N/A 

Solar N/A N/A 

6B Helena, MT 

Geothermal 

Renewable Energy Systems 

Exemption 
100% for 10 years 

Residential Alternative 

Energy System Tax Credit 

$500 per individual 

taxpayer; up to $1,000 per 

household 

Residential Geothermal 

Systems Credit 
$1,500  

Solar 

Renewable Energy Systems 

Exemption 
100% for 10 years 

Residential Alternative 

Energy System Tax Credit 

$500 per individual 

taxpayer; up to $1,000 per 

household 

7A Duluth, MN 

Geothermal N/A N/A 

Solar 
Wind and Solar-Electric (PV) 

Systems Exemption 

Solar: 100% exemption 

from real property taxes 

7B Gunnison, CO 

Geothermal N/A N/A 

Solar 

Property Tax Exemption for 

Residential Renewable 

Energy Equipment 

100% exemption for 

renewable energy system 

property 

 

The net metering method requires an hour-by-hour analysis performed on the electricity 

generation from January 1 through December 31. Each hour’s consumption was compared to its 

generation, and the energy purchased from the grid and sold back to the grid is calculated for each 

hour. The conditions in Table 4.3 explain how the values are calculated. 
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Table 4.3 Net Metering Conditions Hour-by-Hour 

 

 In a given hour, the energy consumed and the energy generated are recorded, Econs and 

Egen, respectively. The energy consumed for the baseline home is from the EnergyPlus™ 

simulation results with the traditional DX cooling / gas furnace HVAC system. The energy 

consumed for the GHP retrofit home are from the EnergyPlus™ simulation results in CHAPTER 

III. The energy generation data is from the BEopt™ simulation. If the energy consumed is greater 

than the energy generated, some or all of the energy will be purchased from the grid. If the energy 

consumed is less than the energy generated, the excess energy generated will be sold back to the 

grid. This comparison is performed for each hour of the day, each day of the year. Zhang et al. 

[86] defined a method of summation to determine the total surplus or deficiency in energy 

generation by a PV array. In just one day, the amount of energy generated minus the amount of 

energy consumed results in a value of ∆e = Egen – Econs. In this study, the value of ∆e is used to 

calculate the amount of energy either purchased or sold in a given hour. Of all the cities in the 

present study, the energy sold back to the grid is credited at a one-to-one rate [87] - [88]. Excess 

credits are rolled over to the next month, and credits remaining at the end of the year are 

compensated to the customer at varying rates. Rate structure for excess energy is shown in Table 

4.4. 

 

Hourly Data Econs Egen Epur Esold 

 [kW] [kW] [kW] [kW] 

Strategy   
if Econs > Egen if Econs < Egen if Econs < Egen if Econs > Egen 

Epur = Econs - Egen Epur = 0 Esold = Egen - Econs Esold = 0 
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Table 4.4 Net Metering Compensation by Location 

Zone City, State Excess Energy Compensation Source 

1A Miami, FL Retail rate = $0.1161 [87] 

2B Phoenix, AZ Retail rate = $0.1284 [89] 

3A Memphis, TN $0.09 if < 10kW; $0.075 if > 10 kW [90] 

3B Las Vegas, NV $0.08826  [91] 

3C Los Angeles, CA Retail rate = $0.1890 [92] 

4A Baltimore, MD Retail rate = $0.1333 [93] 

4C Portland, OR Retail rate = $0.1092 [94] 

5A Des Moines, IA Retail rate = $0.1267 [95] 

5B Reno, NV $0.07175 [91] 

6B Helena, MT Retail rate = 0.1118 [96] 

7A Duluth, MN Retail rate = $0.1338 [97] 

7B Gunnison, CO Wholesale rate (~2.5 times less than retail) [88] 

 

Using the energy consumption and generation data and applying compensation rates in 

Table 4.4, annual savings is calculated. For the baseline + PV system, cost differential is the annual 

operating cost before the PV complement to the annual operating cost with the PV complement. 

For the GHP + PV system, cost differential is the annual operating cost before the GHP + PV 

complement to the annual operating cost with the GHP + PV complement. 

4.2.4 Payback Analysis 

To consider the steadily increasing cost of utilities for residential building owners, the 

actual payback period (APP) method is used in this study. This simple method was introduced by 

Hanna [75] and relies heavily on selecting an accurate annual rate of increase of energy prices. 

Because this critical metric varies with time, a study by Sandoval [77] reports a 67% increase in 

energy prices from 2001 to 2014. This increase over the 14-year period averages to 5.15% rate 

increase annually, the value used in this study. For example, consider a home that experiences an 
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annual utility savings, ASn, of $1,000 in the first year (n =1) after an energy-efficiency upgrade 

project. Then, AS1 = 1,000. At an energy price increase of 5.15%, the savings at the end of the 

second year would be AS2 = 1.0515*AS1 = 1.0515*$1,000 = $1,051.50. Equation 4.2 generalizes 

the example across n years: 

 

 

𝐴𝑆𝑛 = 1.0515(𝐴𝑆𝑛−1) 
(4.2) 

Each year, the annual savings is subtracted from the dollar amount remaining on the initial 

capital investment. Twenty-five years is the expected useful system lifetime, so the net lifetime 

savings can be calculated from Equation 4.3: 

 

 

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑁𝑒𝑡𝐴𝑃𝑃 =  −𝐶𝑜𝑠𝑡𝑐𝑎 + ∑ 𝐴𝑆𝑛

𝑛=25

𝑛=1

 (4.3) 

where Costca is the total capital investment after all incentives are applied. For the baseline 

+ PV system, Costca is the cost of the PV system after incentives. For the GHP + PV system, Costca 

is the cost of the GHP + PV system after incentives. 

4.3 NZE Results 

Energy generation results for each of the 12 cities was analyzed hour-by-hour to quantify 

the net metering results. To explain the data breakdown, Figure 4.2 is an example of a one-week 

duration in Los Angeles, CA from July 1 at 12:00 AM to July 7 at 11:59 PM. As can be seen, 

although energy consumed, Econs, peaks during the day and goes down at night, there is a consistent 
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demand around the clock. In contrast, the energy generated, Egen, spikes during the day and drops 

to zero at night when the sun is down. 

 

Figure 4.2 Los Angeles, CA Net Metering Data for One Week 
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Quantifying the electricity purchased and electricity sold to the grid requires this hourly 

breakdown. Adding to Table 4.3, Table 4.5 displays the results for two separate hours for Los 

Angeles, CA. On July 8 at 1:00 PM, the generation was higher than the demand, so zero electricity 

was purchased. The remainder was sold back to the grid. On October 25 at 7:00 PM, consumption 
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was higher than generation, so a portion of the demand was purchased. Zero electricity was sold 

back to the grid.  

Table 4.5 Net Metering Results Example for Los Angeles, CA 

 

       

Hour Econs Egen Epur Esold 

 [kW] [kW] [kW] [kW] 

   
if Econs > Egen if Econs < Egen if Econs < Egen if Econs > Egen 

Epur = Econs - Egen Epur = 0 Esold = Egen - Econs Esold = 0 

07/08 13:00:00 2.55 7.82 0 5.27 

10/25 19:00:00 2.90 0.76 2.14 0 

The comparative analysis shown in Table 4.5 was replicated for all 8,760 hours of the year 

in each of the 12 cities, for the baseline + PV system and the GHP + PV system. As stated in 

Section 2.1, Assumption #3, the PV array capacity was selected to either fully achieve NZE or it 

was chosen to be 12 kW, whichever was smaller. Los Angeles, CA was the only location that 

achieved true NZE with either HVAC + PV option, and the array capacity for that scenario was 

12 kW. Therefore, the financial analysis of all 12 cities is based upon a PV array capacity of 12 

kW.  Detailed breakdowns of the energy results and annual savings for both system scenarios are 

given in Table 4.6.   
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Table 4.6 Energy Consumption, Generation, and Annual Savings by City 

Zone City, State 

PV 

Array 

Size 

Annual 

Econs 

Baseline 

Annual 

Egen 

Utility 

Cost 

Annual 

Cost 

Baseline 

Annual 

Cost 

Annual 

Savings  

Annual 

Cost 

Annual 

Savings  

       Baseline + PV GHP + PV 

  [kW] [kWh] [kWh] [$/kW] [$] [$] [$] [$] [$] 

1A Miami, FL 12 21,228 16,442  0.1161 $ 2,465  $ 556   $ 1,909   $ 801  $ 1,663 

2B Phoenix, AZ 12 24,473 20,010  0.1196 $ 2,927  $ 534   $ 2,393   $ 538   $ 2,389  

3A Memphis, TN 12 26,114 16,116  0.1067 $ 2,786  $ 1,067   $ 1,720   $ 620   $ 2,166  

3B Las Vegas, NV 12 23,686 20,303  0.1186 $ 2,809  $ 401   $ 2,408   $ 166   $ 2,644  

3C Los Angeles, CA 12 17,855 18,592  0.1890 $ 3,375  $ (139)  $ 3,514   $ (191)  $ 3,566  

4A Baltimore, MD 12 29,723 15,752  0.1333 $ 3,962  $ 1,862   $ 2,100   $ 878   $ 3,084  

4C Portland, OR 12 26,312 13,534  0.1092 $ 2,873  $ 1,395   $ 1,478   $ 720   $ 2,153  

5A Des Moines, IA 12 36,652 16,767  0.1267 $ 4,644  $ 2,520   $ 2,124   $ 1,022   $ 3,622  

5B Reno, NV 12 28,729 19,260  0.1186 $ 3,407  $ 1,123   $ 2,284   $ 279   $ 3,128  

6B Helena, MT 12 34,628 16,651  0.1118 $ 3,871  $ 2,010   $ 1,862   $ 774   $ 3,097  

7A Duluth, MN 12 40,277 15,574  0.1338 $ 5,389  $ 3,305   $ 2,084   $ 1,486   $ 3,903  

7B Gunnison, CO 12 35,564 19,722 0.1214 $ 4,317  $ 1,923   $ 2,394   $ 576   $ 3,742  

 

With the exceptions of Miami, FL and Phoenix, AZ, the cities achieved greater annual 

savings over the baseline home with the GHP + PV system than the baseline + PV system. The 

baseline + PV system achieved greater annual savings in the two cities of exception. This result is 

due to the zero or negative energy savings when these two baseline homes were retrofit with the 

GHP HVAC system [82]. With the PV array size selected from the performance data, all federal 

and local incentives were applied to capital costs, resulting in the capital cost after incentives, 

reported in Table 4.7.  
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Table 4.7 GHP + PV Combination System Capital Cost Before and After Incentives 

Zone City, State Costcb,GHP Costcb,PV Costcb, total 
Federal 

Credit 

Local 

Discount 
Costca 

1A Miami, FL $ 12,000 $ 29,280 $ 41,280 $ 10,732 $    462 $ 30,084 

2B Phoenix, AZ $ 12,000 $ 29,280 $ 41,280 $ 10,732 $ 1,348 $ 29,198 

3A Memphis, TN $ 12,000 $ 29,280 $ 41,280 $ 10,732 $ 1,184 $ 29,363 

3B Las Vegas, NV $ 12,000 $ 29,280 $ 41,280 $ 10,732 $         - $ 30,547 

3C Los Angeles, CA $   8,000 $ 29,280 $ 37,280 $   9,692 $ 3,468 $ 24,118 

4A Baltimore, MD $ 12,000 $ 29,280 $ 41,280 $ 10,732 $ 4,483 $ 26,064 

4C Portland, OR $ 12,000 $ 29,280 $ 41,280 $ 10,732 $    549 $ 29,998 

5A Des Moines, IA $ 12,000 $ 29,280 $ 41,280 $ 10,732 $ 5,788 $ 24,758 

5B Reno, NV $ 12,000 $ 29,280 $ 41,280 $ 10,732 $         - $ 30,547 

6C Helena, MT $ 12,000 $ 29,280 $ 41,280 $ 10,732 $ 3,846 $ 26,700 

7A Duluth, MN $ 12,000 $ 29,280 $ 41,280 $ 10,732 $    497 $ 30,049 

7B Gunnison, CO $   8,000 $ 29,280 $ 37,280 $   9,692 $      93 $ 27,494 

  

Figure 4.3 displays the payback period results for the baseline + PV system and the GHP 

+ PV system that will move toward NZE across the 12 U.S. climate zones. A distinct delineation 

exists between climate zones 1-3 and climate zones 4-7.  Each climate zone deserves its own 

commentary, as the results are quite revealing in terms of geographical location, sun exposure, soil 

type, and climate. 
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Figure 4.3 NZE System Payback Comparison 

Results shown reflect the payback as determined using the actual payback period (APP) method. 
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If a system decision was based on the payback period alone, several would be challenging 

because the numbers for both systems are comparable. For example, Reno, NV has a mere 

|
(8.1 𝑦𝑒𝑎𝑟𝑠)−(7.9 𝑦𝑒𝑎𝑟𝑠)

(8.1+7.9)𝑦𝑒𝑎𝑟𝑠 2⁄
| × 100 = 2.5% difference in payback period between the two systems. 

While the payback period is a valuable metric, the system lifetime savings provides the long-term 

financial outlook of the NZE systems. After all, a homeowner may accept a longer payback period 

in order to achieve a greater return on investment over the life of the system. Therefore, Figure 4.4 

displays the lifetime system savings of both the baseline + PV system and the GHP + PV system.  
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Figure 4.4 NZE Lifetime System Savings Comparison 

Results shown reflect the lifetime system savings as determined using the actual payback period 

(APP) method. 
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Obtaining this second financial measure clarifies the more lucrative system savings over 

the lifetime of the system. The preferred system was unclear in Reno, NV by only assessing the 

payback periods, but the lifetime system savings data identifies the GHP + PV system as preferred. 

Table 4.8 summarizes the shorter payback period system and the higher lifetime system savings 

for each climate zone. From these two metrics, the preferred NZE system is determined and 

reported. 
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Table 4.8 Preferred NZE System Based on Payback and Lifetime Savings Comparison 

Zone City, State 
Shorter 

Payback 

Higher Lifetime 

System Savings 

Preferred 

NZE System 

1A Miami, FL PV PV PV 

2B Phoenix, AZ PV PV PV 

3A Memphis, TN PV GHP + PV GHP + PV 

3B Las Vegas, NV PV PV PV 

3C Los Angeles, CA PV PV PV 

4A Baltimore, MD GHP + PV GHP + PV GHP + PV 

4C Portland, OR GHP + PV GHP + PV GHP + PV 

5A Des Moines, IA GHP + PV GHP + PV GHP + PV 

5B Reno, NV PV GHP + PV GHP + PV 

6B Helena, MT GHP + PV GHP + PV GHP + PV 

7A Duluth, MN GHP + PV GHP + PV GHP + PV 

7B Gunnison, CO GHP + PV GHP + PV GHP + PV 

Place all detailed caption, notes, reference, legend information, etc here 

 

For two of the locations, Memphis, TN and Reno, NV, the shorter payback and higher 

lifetime savings resulted from two different systems. Here, the preferred system is not as apparent 

as if both factors pointed to the same system. While the payback was shorter for the baseline + PV 

system alone, the GHP + PV system yielded higher lifetime system savings and was ultimately 

selected as the preferred system. Both cities experience a heating demand in the winter months, as 

well, also lending support to the economic benefits of the GHP component. Another important 

note, both Memphis, TN and Reno, NV had weak local incentive structures for PV and GHP 

initiatives, as shown in Table 4.2. Greater incentives for GHP technology in these climate zones 

would drive down the payback period for the GHP + PV system and encourage the shift away from 

fossil fuel-based space heating and cooling. 
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4.3.1 Discussion 

To fully decipher the preferred NZE system results shown in Table 4.8, several 

classification schemes were generated to assign a score to each city in reference to sun intensity, 

soil thermal conductivity, and local financial incentive structure. These three variables have great 

impact on the appeal of the baseline + PV system versus a GHP + PV combination system.  

A sun intensity rating was assigned to each city as strong, intermediate or mild. Based on 

the National Renewable Energy Laboratory (NREL) Global Horizontal Solar Irradiance Map, 

shown in Figure 4.5, each city was assigned a sun intensity rating [98]. The scale developed for 

this study is given in Table 4.9. 

 

Figure 4.5 NREL Solar Irradiation Map [98] 

National Renewable Energy Laboratory, “U.S State Solar Resource Maps,” Geospatial Data 

Science, 2020. [Online]. Available: https://www.nrel.gov/gis/solar.html. [Accessed: 06-Jan-

2020]. 
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The sun intensity rating, Rs, is assigned to each city representing its location on the scale 

given in Figure 4.5. If a city is in the top third of solar irradiation, middle third, or lowest third it 

is assigned a Rs of strong, moderate, or mild, respectively. Rating scale is given in Table 4.9. 

Table 4.9 Sun Intensity Rating Scale 

Sun Intensity Rating, 

Rs 
is [kWh/m2/day] 

Strong > 5.25 

Moderate 5.25 > is > 4.50 

Mild < 4.50 

 

 

A soil conductivity classification, Ck, was assigned to each city as high, moderate or low. 

The lowest and highest soil thermal conductivities of the 12 sites are 𝑘 = 1.009 𝑊

𝑚∙𝐾
 and 𝑘 =

2.307 𝑊

𝑚∙𝐾
, respectively [82]. A full listing of soil thermal conductivities in all locations can be seen 

in the Appendix B, Table B.2. To arrive at the scale, the range of soil conductivities of the 12 

locations was divided into three equal ranges Cities were assigned Ck as low, middle, and high 

based on which range segment its soil conductivity lies. The scale developed in this study is shown 

in Table 4.10. 

Table 4.10 Soil Conductivity Classification Scale 

Soil Conductivity 

Classification, Ck 
k [W/m-K] 

Low 1.009 to 1.442 

Middle 1.443 to 1.874 

High 1.875 to 2.307 
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A local incentive structure strength was assigned to each city as robust, mediocre or weak. 

To arrive at the multiplier, iM, analysis was performed on the local incentives and the resulting 

percentage discount it achieves on the initial capital investment of the GHP + PV combination 

system. The highest percentage discount was in Des Moines, IA and its local incentives achieve a 

14.024% discount. This value was designated as imax, against which all other cities are compared. 

The remaining cities’ percent discounts were divided by imax, resulting in a percentage of imax which 

becomes the coefficient of the multiplier, iM. For example, the local incentives in Baltimore, MD 

achieved a percentage discount of 10.860%. Dividing this value by imax yields 0.14024/0.10860 = 

0.77. Thus, Baltimore’s iM is 0.77imax, where 0.77 is the coefficient. If the coefficient is in the top 

33%, middle 33% or lowest 33% it is assigned Si of robust, mediocre, or weak, respectively. The 

scale developed in this study is shown in Table 4.11. A full listing of local incentive percent 

discount for all locations can be seen in the Appendix B, Table B.2. 

Table 4.11 Incentive Structure Strength Scale 

Incentive Structure 

Strength Factor, Si 
Multiplier, iM 

Robust iM ≥ 0.66imax 

Mediocre 0.66imax > iM > 0.33imax 

Weak iM ≤ 0.33imax 

 

As seen in Table 4.12, the Ri, Ck and Si ratings are compiled by city. The final column is 

the preferred energy-efficiency/net zero energy (EE/NZE) system as reported in Table 4.8. Recall, 

Recall, the preferred system is the one that achieved the shortest payback period/highest lifetime 

system savings by comparing the baseline + PV system versus GHP + PV combination system 

outlined in this research. 
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Table 4.12 Key Contributor Rankings 

Zone City, State 
Sun Intensity 

Rating, Ri 

Soil Conductivity 

Class, Ck 

Incentive Structure 

Strength, Si 

Preferred 

EE/NZE System 

1A Miami, FL Strong Middle Weak PV 

2B Phoenix, AZ Strong Low Weak PV 

3A Memphis, TN Intermediate High Weak GHP + PV 

3B Las Vegas, NV Strong Middle Weak PV 

3C Los Angeles, CA Strong Low Robust PV 

4A Baltimore, MD Mild High Robust GHP + PV 

4C Portland, OR Mild High Weak GHP + PV 

5A Des Moines, IA Mild Middle Robust GHP + PV 

5B Reno, NV Strong High Weak GHP + PV 

6B Helena, MT Mild Middle Robust GHP + PV 

7A Duluth, MN Mild High Weak GHP + PV 

7B Gunnison, CO Intermediate High Weak GHP + PV 

 

Numerous observations and associated implications are extractable from Table 4.12. 

Correlations between sun, soil, incentives, and the resulting preferred system are realized and 

allow for future interpolation of other locations. The observations and implications have been 

summarized in Table 4.13. 

Table 4.13 Final Observations and Implications 

Observation 1 
Five cities ranked strong for Ri, sun intensity rating. Of these five, four yielded the 

PV system as the preferred EE/NZE choice. 

Implication 1 
A city that will benefit more from the PV system alone will likely have a strong sun 

intensity rating. 

  

Observation 2 
The one city with a strong sun intensity rating that yielded the GHP + PV system as 

preferred has a high soil conductivity class. 

Implication 2 

A strong sun intensity rating does not guarantee the PV system alone as preferred. If 

the GHP + PV system results as the preferred option, the city likely has a high soil 

conductivity class. 
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Table 4.13 (continued) 

  

Observation 3 
The four cities that resulted in PV system alone as preferred all have a middle or 

low Ck, soil conductivity class. 

Implication 3 
A city with a strong sun intensity rating and a low or middle soil conductivity class 

will yield the PV system alone as preferred. 

  

Observation 4 All five cities with strong Ri have a weak incentive structure strength, Si. 

Implication 4 
With a more sophisticated incentive structure, the PV system would experience 

shorter payback periods and higher public interest. 

  

Observation 5 
The one city with a strong sun intensity rating that yielded the GHP + PV system as 

preferred (5B) has a heating demand in heating season. 

Implication 5 
Even with a strong sun intensity rating, a city will yield GHP + PV system preferred 

if it experiences at least a moderate heating demand. 

  

Observation 6 
The remaining 7 cities yielded the GHP + PV combination system as preferred. All 

7 of these cities have a moderate to high heating demand in the heating season. 

Implication 6 
Regardless of sun intensity rating, if a city has a moderate to high heating demand, 

the GHP + PV system will likely be preferred. 

  

Observation 7 
The two cities with low soil conductivity class did not yield GHP + PV system as 

preferred. 

Implication 7 
Soil conductivity class is directly proportional to the ultimate preferability of the 

GHP + PV combination system. 

  

Observation 8 

The one city with a strong sun intensity rating and high soil conductivity class 

yielded the GHP + PV system as preferred, but also has a weak incentive structure 

strength. 

Implication 8 

With a more sophisticated incentive structure, the strong sun intensity/high soil 

conductivity combination will have shorter payback periods and greater public 

interest may result. 

 

Of note, simultaneous with the results of this research coming to light, the Federal 

Residential Renewable Energy Tax Credit dropped from 30% to 26% with the arrival of 2020. 

This new percentage was used for the payback period calculation for all 12 cities in this NZE 
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investigation. While this incentive decrease may not deter a potential customer, the trend toward 

reduce financial incentives certainly works against the prevailing barrier of high capital investment 

to widespread deployment. The Federal Residential Renewable Energy Tax Credit is due to 

decrease from 26% to 22% in the year 2021. 

4.4 Consumer Decision Drivers 

In CHAPTER III, our research led to the nagging question of “what will people accept?” 

in reference to financial savings and payback period for renewable energy options. A survey 

classification led to quantifying the answer based upon percentages of the population that are 

willing accept the payback calculated for climate zones across the U.S. While this is a logical 

attempt at arriving at an answer through methodical means, a piece was missing that was difficult 

to identify. The actions and decisions of homeowners still seemed very challenging to predict. So, 

once all financial information is presented, what ultimately triggers one homeowner to act on 

renewable energy and the other to resist? Certainly, a low payback period, high energy savings 

portfolio could be presented to two different homeowners, and their different reactions would not 

be surprising. As stated, despite all the facts, the final decision is a personal choice. How do we 

address the softer, less measurable factors? This question led to an investigation into the sociology 

behind renewable energy perceptions. 

Interesting links between personal affiliations and the environment are a popular topic of 

study. Because of the eliminated reliance on fossil fuels, residential geothermal heating and 

cooling is considered environmentally friendly. Solar photovoltaics fall into this category for the 

same reason. Both technologies are inexhaustible energy sources, so they are referred to by a 

broader categorization of renewable energy in the context of pro-environment options. In reference 

to environmental issues, Arpan et al. [99] tested the hypothesis that political orientation and an 
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individual’s value framework drive their magnitude of environmental concern. Specifically, 

whether one identifies as liberal or conservative will heighten or detract from an interest in 

environmentally beneficial initiatives. To test the hypothesis, advertisements for environmental 

products were presented to survey participants from two different moral domains, harm/care and 

purity. As defined by moral foundation theory, the domain of harm/care refers to a moral stance 

that prioritizes safety and well-being of others [100]. The domain of purity prioritizes cleanliness 

of surroundings and opposition to degradation. Typically, liberals are moved by messages of the 

harm/care domain and conservatives connect to messages of the purity domain. Regardless of the 

test subject’s affiliation as either liberal or conservative, they were provided a product 

advertisement from one of the two domains. Results concluded that message framing, or tailoring 

the moral domain to the audience, did not significantly change the appeal of renewable energy use 

in liberal or conservative thinkers. 

The verdict is not conclusive on the findings by Arpan et al. [99]. Feinburg and Willer 

[101] also studied the impacts of moral values of purity and harm/care on one’s attitude toward 

the environment. Their research defines “segmentation” as the phenomenon that different groups 

of people will be motivated and affected by different strategies of message framing. If individuals 

view environmental harm as a personal responsibility, the more likely they are to view stewardship 

to the environment as a moral obligation; and moral campaigns are historically more effective than 

nonmoral campaigns. Their study proved that most pro-environment appeals are of the harm/care 

domain rather than the purity domain, and thus attract more liberal than conservative individuals. 

Reframing for varied audiences will unite opposing sides of the environmental issues. For a 

consumer, viewing an advertisement that originates from the same moral domain as the viewer 

will be attractive, because the conveyor of the message is perceived as a trusted and fellow ally.  
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In a similar investigation, Perlaviciuite and Steg [102] study “biospheric” versus “egoistic” 

valued individuals. Biospheric individuals are those that value nature, egoistic are those that value 

wealth. Their findings prove that biospheric and egoistic individuals are drawn to different 

components of renewable energy. Biospheric thinkers are attracted to the movement from non-

renewable to renewable energy for longevity of the planet. Egoistic thinkers are attracted to the 

financial savings potential of consumer-generated electricity and reduced energy use technologies. 

However, they stated that if individual negative financial consequences are too great, the 

biospheric nature of an individual is likely not strong enough to convince one to pursue the 

alternative. The individualized impact trumps the altruism. In summary, Perlaviciute et al. [102] 

claimed that environmental campaigns across the population are more persuasive than financial 

campaigns, and energy policies should always aim to speak to group-specific values.  

The studies cited on the sociology of renewable energy bring a new light to the overall 

investigation of NZE systems. They bring awareness to the fact that, despite the most attractive 

financial profile to a homeowner, there are many more intangible factors that will sway the 

consumer to adopt renewable energy in the home or not. These factors include individual political 

affinity and moral values, consumer financial health, age, gender, level of education and even 

religious identity [99] [101] [102]. As shown in Figure 4.3, all cities studied boast a payback period 

of less than 10 years for the preferred NZE system. However, the soft factors make widespread 

adoption difficult to predict and highly variable. Message framing and energy policy advocation 

that attempts to connect with highly varied moral domains may capture more customers than a 

neutral approach.  Engineers research the technology and sociologists study the behavior, both 

crucial components of the decision to pursue residential renewable energy.  
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4.5 Chapter Summary 

This chapter focused on the residential sector in the United States. A net-zero energy 

system comprised of a PV electricity generation array added to a traditional, electric cooling / 

natural gas heating system was compared to a PV net-zero energy system paired with a geothermal 

HVAC system. The energy and financial implications of the two options technology are reported. 

Communities across the nation in many climate zones are investigated to arrive at a comprehensive 

profile of performance and financial incentives. 
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CHAPTER V 

CONCLUSIONS 

In this dissertation, focus was on the residential sector in the United States. A renewable 

energy heating and cooling system comprised of a geothermal heat pump was thoroughly analyzed 

and compared to a more traditional, electric cooling / natural gas heating system. The energy and 

financial implications of this change in technology are reported. Communities across the nation in 

many climate zones are investigated to arrive at a comprehensive profile of performance and 

financial incentives. CHAPTER I provided a review of the existing database of information on 

national and global technological and financial strides for renewable energy, geothermal 

specifically. Design optimization efforts included borefield design, pipe material, grout material, 

thermal enhancements to pipe and grout, and choosing the proper heat pump size. Despite 

technological and economic advancement, geothermal technology spread worldwide is slow. 

Communities, leaders, and individuals are hesitant for several reasons, the two top barriers being 

initial capital investment and lack of knowledge. Creative measures have been attempted across 

the globe to mitigate the high cost. Some attempts are stable, some are cyclic, and some have 

failed. Published literature proves that efforts are well-documented for attempts to optimize 

performance and incentivize all sectors to implement geothermal technology. 

CHAPTER II focused on the mathematical process of designing a location-specific 

borefield through the consideration of weather profile, soil thermal and physical characteristics. 

Without relying on region averages, the calculations are specific to a single-family home 
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residence’s specific physical address. With this precision, this home’s profile may vary from a 

neighbor across the street. Exciting energy savings and financial results are discovered for a home 

in Memphis, Tennessee. The Memphis, TN prototype home achieved an annual energy savings of 

26%. This number is only one factor for consideration, however. Perhaps even more important to 

the homeowner is the payback period. Through application of federal and location-specific 

incentives, a reliable payback period is reported. For the subject home, a payback period of over 

15 years. Human interest polls show that this is too long for most consumers to accept, and 

increased incentive structures would be necessary to decrease the payback period to an acceptable 

duration. A key takeaway from CHAPTER II is that geothermal space heating and cooling systems 

show promise for high energy savings in heating-dominant climates. In this chapter, a template 

method of analysis was created that allow for similar analysis of other locations for residential 

geothermal viability. 

CHAPTER III widens the study of residential geothermal viability to the contiguous United 

States. The 12 climate zones investigated characterize a diverse collection of temperature and 

humidity profiles, ranging from hot / humid in Miami, Florida to cold / dry in Gunnison, Colorado. 

10 out of the 12 climate zones resulted in annual energy savings with the geothermal system over 

the baseline electric cooling / natural gas heating system. The highest energy savings was in 

Helena, Montana at an astounding 59%. However, even in cities that had net positive energy 

savings, the annual financial savings and payback period is the metric more crucial to the 

consumer. Using the template developed in CHAPTER II, all local incentives were compiled to 

arrive at the promising payback results for several climate zones. Helena, Montana also achieved 

the shortest payback period at only 3.2 years. The results were not so attractive for other cities, 

with Los Angeles, California resulting in a payback of over 35 years. The chapter effectively 
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provides a diverse climate prediction of residential geothermal performance and financial 

implications. 

CHAPTER IV dove deeper into the possibility of the net-zero energy residential building, 

a rapidly rising goal in communities globally. While a catchy phrase, the technical and financial 

reality of arriving at this label is a challenge worth investigating. Building upon the energy results 

from the geothermal system, a solar photovoltaic array is added as a complementary system (GHP 

+ PV) to each of the 12 residences. The GHP + PV combination system NZE potential was 

compared to a PV system added to the baseline home, prior to any GHP energy-efficiency 

modifications. Updated payback data and lifetime savings for both options are calculated and 

compared. Ultimately, the preferred system is identified for each climate zone. Three new 

variables are defined in this analysis: soil conductivity classification (Ck), sun intensity rating (Ri), 

and incentive structure strength factor (Si). Combinations of these three new descriptive variables 

help make observations and implications of the 12 cities of interest. An exciting takeaway from 

this investigation is the ability to apply these three variables to any city in the country, and predict 

what the preferred system will likely be through comparison to the original sample. The larger the 

database of cities that undergo the complete simulation and financial analysis, the more accurate 

the three predictors will become. A key contribution of this chapter is the examination of the 

intangible factors of human nature that drive ultimate consumer decisions. Fascinating revelations 

about human moral domains and personal profiling reveal a potential avenue for sparking interest 

in renewable energy projects in all consumers. 

The outcome of this dissertation is an exciting catalyst for continued work. Significant 

conclusions of the research performed lead to the following action items for future work: 
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• Conduct sensitivity analysis of payback period to design parameters of the ground 

source heat pump system. Parameters to be varied include thermal conductivity of 

grout and pipe, pipe thermal enhancement characteristics, pipe diameter, porosity 

of soil, and borefield characteristics. 

• Further refine location-specific initial capital investment predictions through 

interviews with local contractors, geothermal heat pump distributors, construction 

firms and construction cost data.  

• Expand the scope of investigation to additional single-family residential buildings 

across the country.  

• Conduct human interest surveys in the United States equipped with data on 

consumption savings, payback period, and lifetime savings. 

• Attempt to quantify consumer interest considering the intangible factors of human 

perception, message framing, and environmentally appropriate moral values.  
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APPENDIX A 

CITY SELECTION DATA WITH MAPS SHOWING AREA OF INTEREST AND 

TEMPERATURE / HUMIDITY DIVERSITY PROFILES
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A.1 Temperature / Humidity Diversity Profiles 

Figure A.1 and Figure A.2 complement Figure 3.5 and Figure 3.6 by showing the same 

information in two different graphic forms. Both representation aim to display the diversity of 12 

cities in terms of temperature and average annual relative humidity. 

 

Figure A.1 CDD and Humidity Diversity by City 
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Figure A.2 HDD and Humidity Diversity by City 
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A.2 Area of Interest (AOI) Maps 

 

Figure A.3 AOI Map of Phoenix, AZ  

Actual address is Street, Zip Code: W Camino Acequia, 33150 

 

Figure A.4 AOI Map of Memphis, TN 

Actual address is Street, Zip Code: N Angela Road, 38117 
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Figure A.5 AOI Map of Las Vegas, NV 

Actual address is State, Zip Code: Capistrano Avenue, 89169 

Figure A.6 AOI for Los Angeles, CA 

Actual address is State, Zip Code: Lancaster Avenue, 90033 
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Figure A.7 AOI Map for Baltimore, MD 

Actual address is State, Zip Code: Kildaire Drive, 21234 

Figure A.8 AOI Map for Portland, OR 

Actual address is State, Zip Code: NE 35th Avenue, 97212 
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Figure A.9 AOI Map for Des Moines, IA 

Actual address is State, Zip Code: 24th Street, 50311 

Figure A.10 AOI Map for Reno, NV 

Actual address is State, Zip Code: Shale Court, 89503 
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Figure A.11 AOI Map for Helena, MT 

Actual address is State, Zip Code: Hillsdale Street, 59601 

Figure A.12 AOI Map for Duluth, MN 

Actual address is State, Zip Code: N Robin Avenue, 55811 
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Figure A.13 AOI Map for Gunnison, CO 

Actual address is State, Zip Code: County Road 20, 81230 
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APPENDIX B 

ENERGYPLUS™ HEAT PUMP PERFORMANCE COEFFICIENT GENERATOR METHOD 

AND SUPPORTING DATA AND FILES
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B.1 Heat Pump Coefficient Generation Data 

Table B.1 EnergyPlus™ Input Heat Pump Performance Coefficients 

 
HP024 HP036 HP048 

 
Cooling Coil Heating Coil Cooling Coil Heating Coil Cooling Coil Heating Coil 

1 -4.90456531 -2.31799810 -5.33174458 -2.23147019 -5.18481347 -2.57816437 

2 6.74327980 -0.78825906 7.06259528 -0.79543561 7.19541141 -0.57868509 

3 -1.45210858 3.50281385 -1.30151223 3.71116372 -1.51151664 3.65509182 

4 0.25233643 0.227169696 0.16321878 -0.07476022 0.09149811 0.06732808 

5 -0.042760421 0.067085681 0.009486198 0.079757167 0.026531282 0.137729839 

6 1.50250021 -5.57554629 3.13537550 -3.70705061 0.13464599 -4.43776197 

7 21.27852024 4.91536758 30.99145717 3.39233638 18.65343886 3.92433630 

8 -22.30015882 1.30587064 -34.07154422 1.51413262 -18.43628448 1.45412049 

9 -0.70887544 0.093056981 -0.47494141 -0.537282926 -0.58733449 -0.214467208 

10 0.618561893 -0.051125447 0.53647961 -0.01329062 0.652992841 0.022058736 

11 -0.02998072 
 

0.080077076 
 

-0.062089624 
 

12 -8.33369971 
 

-6.72197223 
 

-5.70232299 
 

13 2.53386728 
 

1.91664373 
 

0.27881283 
 

14 6.16096323 
 

6.20129177 
 

7.13878521 
 

15 0.68967646 
 

-0.36306207 
 

-0.45105570 
 

16 -0.220149668 
 

-0.256439687 
 

-0.272224773 
 

 

B.1.1 Cooling Coefficients Spreadsheet: General 2-ton Geothermal Heat Pump 

The following spreadsheet contains contains compiled heat pump performance data for five 

manufacturers and the resulting EnergyPlus™ heat pump coefficients for a 2-ton heat pump 

cooling coil. WaterAir_PE_Cooling 024 – Combined 

B.1.2  Heating Coefficients Spreadsheet: General 2-ton Geothermal Heat Pump 

The following spreadsheet contains contains compiled heat pump performance data for five 

manufacturers and the resulting EnergyPlus™ heat pump coefficients for a 2-ton heat pump 

heating coil. WaterAir_PE_Heating 024 – Combined  

file:///C:/Users/Team%20Neves/Desktop/Rebecca%20MSU/ME%209000/Dissertation/Dissertation%20Instructions%20and%20Files/WaterAir_PE_Cooling%20024%20-%20Combined.xls
file:///C:/Users/Team%20Neves/Desktop/Rebecca%20MSU/ME%209000/Dissertation/Dissertation%20Instructions%20and%20Files/WaterAir_PE_Heating%20024%20-%20Combined.xls
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B.1.3 Cooling Coefficients Spreadsheet: General 3-ton Geothermal Heat Pump 

The following spreadsheet contains contains compiled heat pump performance data for five 

manufacturers and the resulting EnergyPlus™ heat pump coefficients for a 3-ton heat pump 

cooling coil. Access file here: WaterAir_PE_Cooling 036 – Combined  

B.1.4 Cooling Coefficients Spreadsheet: General 3-ton Geothermal Heat Pump 

The following spreadsheet contains contains compiled heat pump performance data for five 

manufacturers and the resulting EnergyPlus™ heat pump coefficients for a 3-ton heat pump 

heating coil. Access file here: WaterAir_PE_Heating 036 – Combined  

B.1.5 Cooling Coefficients Spreadsheet: General 4-ton Geothermal Heat Pump 

The following spreadsheet contains contains compiled heat pump performance data for five 

manufacturers and the resulting EnergyPlus™ heat pump coefficients for a 3-ton heat pump 

cooling coil. Access file here: WaterAir_PE_Cooling 048 – Combined  

B.1.6 Cooling Coefficients Spreadsheet: General 4-ton Geothermal Heat Pump 

The following spreadsheet contains contains compiled heat pump performance data for five 

manufacturers and the resulting EnergyPlus™ heat pump coefficients for a 2-ton heat pump 

cooling coil. Access file here: WaterAir_PE_Heating 048 – Combined  

B.2 Soil and Incentive Parameters by City  

file:///C:/Users/Team%20Neves/Desktop/Rebecca%20MSU/ME%209000/Dissertation/Dissertation%20Instructions%20and%20Files/WaterAir_PE_Cooling%20036%20-%20Combined.xls
file:///C:/Users/Team%20Neves/Desktop/Rebecca%20MSU/ME%209000/Dissertation/Dissertation%20Instructions%20and%20Files/WaterAir_PE_Heating%20036%20-%20Combined.xls
file:///C:/Users/Team%20Neves/Desktop/Rebecca%20MSU/ME%209000/Dissertation/Dissertation%20Instructions%20and%20Files/WaterAir_PE_Cooling%20048%20-%20Combined.xls
file:///C:/Users/Team%20Neves/Desktop/Rebecca%20MSU/ME%209000/Dissertation/Dissertation%20Instructions%20and%20Files/WaterAir_PE_Heating%20048%20-%20Combined.xls
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Table B.2 Soil and Incentive Parameters by City 

Zone City | State 
Zip 

Code 
k [W/m•K] Percent 

Discount 
i Multiplier 

1A Miami | FL 33150 1.586 0.0112 0.08 

2B Phoenix | AZ 85051 1.442 0.0327 0.23 

3A Memphis | TN 38117 2.307 0.0287 0.20 

3B Las Vegas | NV 89169 1.730 0.0000 0.00 

3C Los Angeles | CA 90033 1.009 0.0930 0.66 

4A Baltimore | MD 21234 2.163 0.1086 0.77 

4C Portland | OR 97212 2.163 0.0133 0.09 

5A Des Moines | IA 50311 1.730 0.1402 1.00 

5B Reno | NV 89503 2.307 0.0000 0.00 

6B Helena | MT 59601 1.586 0.0932 0.66 

7A Duluth | MN 55811 1.298 0.0121 0.09 

7B Gunnison | CO 81230 2.307 0.0025 0.02 
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